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Abstract— Understanding fluid flow data, especially vortices, is still a challenging task. Sophisticated visualization tools help to gain
insight. In this paper, we present a novel approach for the interactive comparison of scalar fields using isosurfaces, and its application
to fluid flow datasets. Features in two scalar fields are defined by largest contour segmentation after topological simplification. These
features are matched using a volumetric similarity measure based on spatial overlap of individual features. The relationships defined
by this similarity measure are ranked and presented in a thumbnail gallery of feature pairs and a graph representation showing all
relationships between individual contours. Additionally, linked views of the contour trees are provided to ease navigation. The main
render view shows the selected features overlapping each other. Thus, by displaying individual features and their relationships in a
structured fashion, we enable exploratory visualization of correlations between similar structures in two scalar fields. We demonstrate
the utility of our approach by applying it to a number of complex fluid flow datasets, where the emphasis is put on the comparison of
vortex related scalar quantities.

Index Terms—Scalar topology, comparative visualization, contour tree, largest contours, flow visualization.

1 INTRODUCTION

A predominant technique for segmenting and analysing three-
dimensional scalar fields are isosurfaces. Their position and shape
provide clues to the underlying structure of the scalar field. In the
application area considered in this paper, namely the analysis and vi-
sualization of flow data, isosurfaces are a common tool for visualizing
flow features such as vortices or shock fronts amongst other features.
The surfaces are extracted for physical quantities like pressure, density
and temperature, as well as for derived quantities like vorticity, diver-
gence, scalar variables resulting from feature detection criteria like
λ2 [15], or measures of flow variation over time [33]. The comparison
of the isosurfaces and thus of the different variables can confirm and
yield insights into the interaction and relation of different flow related
quantities. For this purpose we implemented an interface for scalar
field comparison.

Of special interest for flow visualization is the reliable detection
and visualization of vortical structures. The method considered to
be state of the art is the λ2 algorithm. The resulting scalar field is
usually visualized using isosurfaces (see Figure 1 (a)-(c)). The iso-
surface extracted for zero isovalue encloses all swirling motion (see
Figure 1(a)). Unfortunately, this segmentation makes analysis rela-
tively difficult as vortices are not automatically separated. As we will
demonstrate throughout this paper, contour trees are helpful to solve
this problem.

In scalar field visualization, the contour tree concept and data struc-
ture plays a central role. It captures the topological evolution of isosur-
faces for varying isovalue. Thus, the contour tree naturally provides
a segmentation of a scalar field. In this work we want to make use of
this segmentation property of the contour tree to detect and compare
features in fluid flow related scalar fields. To the best of our knowl-
edge contour trees have not been used in flow visualization so far. We
use them to generate a largest contour segmentation, to find spatially
overlapping features in the segmentations of two fields and for linked
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contour tree views. In Section 4.2, we introduce the similarity browser
as part of an interface to easily explore (spatial) conjointly appearing
features. This is achieved by providing preview renderings of related
feature pairs which are displayed in descending order of similarity to
display the strongest relationships first. The relationship itself is es-
tablished by means of spatial overlap. Additionally, a graph view is
provided in the interface which illustrates all identified relationships
using information visualization techniques.

In Section 4.3 we describe the interface for interactive user-directed
comparison of the scalar fields based on selecting nodes in linked con-
tour tree views. Selecting a certain node in a view causes the connected
subtree to be highlighted. All affected largest contours in the second
contour tree are automatically extracted and highlighted.

We dicuss a wide range and variety of application datasets from
the fluid flow domain in Section 6. Special emphasis is put on the
comparison and analysis of vortices and vortex related quantities

2 PROBLEM STATEMENT

As already mentioned, the detection of different vortices is of great
interest for flow analysis but the natural segmentation provided by the
popular λ2 criterion does not always separate different vortices. From
Figure 1(a) it can be seen that isosurface visualizations using the stan-
dard isovalue zero suffer from visual clutter and occlusion rendering
analysis or even comparison practically infeasible. A separation of
different vortices is possible by using negative isovalues with larger
absolute value. Still, standard isosurface techniques fail to segment all
different vortices because they may merge at different isovalues. In the
following we consider four datasets to show the practical relevance of
the problem stated above.

The first dataset models the flow in a part of a Francis turbine. The
considered part is the draft tube where the water coming from the rotor
leaves the turbine. The data is obtained by an incompressible compu-
tational fluid dynamics (CFD) simulation. The water runs through the
tube from the upper part of the images in Figure 1 and leaves this part
of the tube at a divider slightly visible in the lower part of the images.
Images 1(a) to 1(c) show complete isosurfaces of λ2 for different iso-
values. Image 1(a) illustrates the problem stated above as it shows the
isosurface for zero isovalue yielding a completely useless image be-
cause of strong occlusion and clutter. While clutter and occlusion are
reduced in images 1(b) and 1(c) by decreasing the isovalue, some of
the features disappear. The largest contour segmentation in image 1(d)
reveals all relevant structures while being less cluttered and easier to
understand than the other images.



(a) λ2 isosurface for 0.0 (b) λ2 isosurface for −1000 (c) λ2 isosurface for −5000 (d) λ2 with largest contours

Fig. 1. (a)-(c) λ2-isosurfaces for different isovalues. Lower isovalues reduce clutter and isolate different features but eliminate certain features. (d)
Largest contour path seed approach reveals all features.

The cuboid dataset, our second example, is a direct numerical sim-
ulation of unsteady incompressible flow around a cuboid. The simula-
tion was carried out with the NaSt3DGP1 flow solver. The velocity and
pressure data is stored on a 100× 100× 100 rectilinear grid. We use
one out of 1355 available time steps. The sharp edges of the cuboid in-
duce vortices which separate from the body. The vortices are stretched
into hairpin shape as they travel downstream. Now it is known that
λ2 and pressure exhibit small values in regions of vortical behaviour.
In order to analyse such a relationship in detail, single vortices must
be extracted along with the according pressure minimum or minima,
respectively.

Our third dataset stems from a CFD simulation of the flow around
a delta wing configuration. The most prominent features of the flow
are two large vortices above the wing which strongly contribute to its
lift. The angle of the flow approaching the wing increases over time.
The inclination of the two vortices changes with the changing on-flow.
At some point the angle of the flow becomes critical and causes the
vortices to burst and develop so called vortex breakdown bubbles. It
has been shown that helicity and stagnation points play an important
role in the creation of the bubbles [8]. We pick a time step with fully
developed bubbles for investigation and analysis. Now, if the bubbles
and their creation are to be analysed further, their location and shape
need to be extracted. It is understood that more than one quantity is
involved in the creation of the bubbles, therefore at least two quantities
and their relationship need to be studied at once.

NASA’s well known blunt fin dataset [12] is our fourth example.
The image in Figure 7 shows only the left part of the fin because of
the symmetry assumed for the simulation. The flow approaches the
fin from the right side of the image and exhibits several vortices and a
shock branching in front of the fin. From the fluid mechanics literature
it is known that a shock can be described by a high gradient in density
and pressure [27]. Here, this relationship can easily be verified by us-
ing standard isosurface techniques but an automatic extraction would
be more convenient.

3 RELATED WORK

Relevant prior work to this paper includes work on visualizing two
scalar fields simultaneously [35], visualizing correlations between
multiple fields [21], information visualization of similarities between
multiple fields [1], feature identification and tracking [22, 16], topo-
logical analysis and display of data [6], and topological tracking [23].

The simplest method for multi-variate visualization is to juxtapose
visualizations of individual properties, relying on linked views[34] to

1NaSt3DGP was developed by the research group in the Division of Sci-
entific Computing and Numerical Simulation at the University of Bonn. It is
essentially based on the code described in a book by Griebel et al. [10]. A
version of the NaSt3DGP code, as well as related information and documen-
tation is available for download at http://wissrech.iam.uni-bonn.
de/research/projects/NaSt3DGP/index.htm.

impose sufficient visual structure for the human user to detect impor-
tant relationships between the properties. More advanced methods su-
perimpose two visualizations, define visual properties using derived
properties [35], map individual properties to different visual chan-
nels [17] or even different techniques [18], or allow visual queries of
individual properties [9].

Such methods, however, tend to bog down because of occlusion and
visual clutter caused by the sheer complexity of engineering simula-
tions in particular, and more recent work has looked at global correla-
tions between fields [21] to extract significant relationships. However,
not all relationships are global - many are instead small-scale correla-
tions. Other researchers [14] have looked at local relationships using
well-established notions of neighbourhoods, but these neighbourhoods
tend to be of fixed size and shape.

3.1 Vortex Detection
We will discuss our comparison approach on some vortex related
quantities in Section 6. There is a large number of such quantities.
This may result from the lack of a precise mathematical definition of
a vortex [19] although vortices are important features and thus some
kind of description is needed. The simplest and most important quan-
tity related to vortices is vorticity, i.e. the curl of the velocity field.
As vorticity describes the rotational behaviour of a fluid, vortices usu-
ally correlate with regions of high vorticity. However, exceptions like
shear flow exist. A second indicator of vortices is locally low pressure.
Some deficiencies of low pressure as vortex criterion led to a kind of
modified pressure criterion known as the λ2-criterion introduced by
Jeong an Hussain [15]. There, negativity of two eigenvalues of a ma-
trix related to the pressure Hessian indicates the existence of vortices.
The matrix is obtained from the velocity gradient tensor and the neg-
ativity of the eigenvalues is usually ensured by searching for negative
values of the middle eigenvalue, i.e. λ2. All these values indicate vor-
tex regions in contrast to vortex core lines, the centre lines of vortices,
as extracted by Sujudi and Haimes [25] and subsequent work.

Most similar to the approach described in this work is the ex-
ploratory tool to study vortical flows described by Stegmaier et al. [24].
It uses the Banks-Singer predictor-corrector algorithm in combination
with the λ2 field to detect the core line of a vortex using λ2 minima
which are smaller than zero as seed points. Vortex boundaries are de-
tected by radially sending out rays in the plane perpendicular to the
vortex core line in every step and sampling the λ2 field along the rays
until the user-defined λ2 isovalue is exceeded. Using the resulting
points, a surface enclosing the core of the vortex is constructed. In
contrast, the approach described in this work is more general since it
considers the whole volume by means of the contour tree. Features
are defined as largest contours, consequently vortices are minima in
the λ2 field, which are separated automatically without manual inter-
action or thresholds. Since the optimal isovalue for every vortex is
determined separately, this is a more natural separation criterion than
artifically designated thresholds. Contour tree simplification accounts
for vortices which may consist of smaller connected minima regions.



3.2 Contour Trees

Contour trees are abstractions representing the nesting relationship of
all possible isovalued contours in a field [3], and have been used as
abstract representations of the data [2], to store or extract individual
contours [28, 13, 6], to simplify the topology of the field [7], and for
direct comparison of fields by graph matching [11, 36].

Conceptually, contour trees result from shrinking all of the contours
in a function to single points, leaving only a topological skeleton of the
function which has a 1-1 correspondence between points in the tree
and entire contours in the function. Formally, the vertices or supern-
odes of the contour tree represent contours passing through critical
points of the function at which the connectivity of level sets change,
while the edges or superarcs of the contour tree represent continuously
deforming sets of contours with unchanging connectivity at varying
isovalues. Moreover, the local extrema of the function appear as leaf
vertices of the contour tree, while saddle points appear as interior ver-
tices providing that the connectivity, as opposed to the genus, of the
contours, changes.

The flexible isosurface interface [6] exploits this 1-1 correspon-
dence by showing that individual contours can be represented and
manipulated as single points in the contour tree, and by allowing the
manipulation of sets of contours which need not share a common iso-
value. As a corollary, this also brought together prior work in fea-
ture tracking [22] and segmentation [20] by showing that the largest
contour segmentation corresponded to contours placed near the inte-
rior (saddle) end of superarcs incident to extrema. Thus, the largest
contour segmentation and feature tracking definitions of features are a
special case of the flexible isosurface.

Subsequent work [7] refined the flexible isosurface by demonstrat-
ing that geometrically minor topological features can be removed by
graph simplifications of the contour tree. An important property of this
simplification method is that it is based on local geometric measures -
geometric properties such as surface area or volume of individual con-
tours. By suppressing topological features of small geometric volume,
this permits direct interaction with larger scale topological features of
the data. Correspondingly, this permits both largest contour segmenta-
tion and feature tracking approaches to ignore small scale features in
favour of larger features, a property which we will exploit later. Addi-
tional work then extended the flexible isosurface approach to volume
rendering by localising transfer functions to individual superarcs and
the corresponding contours [26, 30].

In either case, the ability to render single features with varying iso-
values helps address all of the problems noted above - locality, regu-
larity of neighbourhoods, visual clutter and occlusion. Moreover, the
ability to perform topological simplification allows the definition of
feature to be varied to suppress noise and small features.

4 THE INTERFACE

As mentioned above, our new interface consists of three parts: the
similarity browser, two linked contour tree views and a main render
view. In the following subsections, we describe the first two parts of
our interface and their connection to the render view. For the similarity
browser, which consists of a thumbnail gallery showing feature pairs
and a graph view illustrating their relationship we need to be able to
extract the features. Therefore and for the comparison in general, we
first give our definition of the terms feature and similarity of features.

4.1 Feature Definition and Feature Similarity

In general, we follow the argument of Silver et al. [22] that features
can be defined by local extrema. A more specific definition was given
by Manders et al. [20] who defined features through a largest contour
segmentation obtained by region growing. In such a segmentation a
feature is defined by the largest contour around an extremum which
does not contain another critical point. Unfortunately, both approaches
lack a well-founded topological algorithm for finding the threshold
value of the feature boundary. Therefore, we define a feature as a leaf
and its adjacent superarc in a simplified contour tree which naturally
corresponds to a largest contour and its ”interior”.

We obtain the information about largest contours from the fully aug-
mented contour tree which has been simplified using a local geometric
measure [7]. Any geometric measure could be used for simplification,
but since the similarity measure described later in this section is based
on volumetric overlap we decided to use volume as simplification mea-
sure. For simplification two thresholds must be set manually, one for
each scalar field. The threshold as such can be interpreted as a lower
bound for the size of the extracted features. Since the fully augmented
contour tree contains all vertices, a superarc between a local maximum
or minimum and the respective saddle comprises of vertices belonging
to the volume of the according largest contour. Since this set of ver-
tices is associated to the largest contour, it is called associated vertex
set in the following.

With the definition of feature we can now define the similarity of
features of different scalar fields SA and SB. In order to compute the
similarity between two given features FA and FB, let VA be the associ-
ated vertex set of FA and VB the associated vertex set of FB. Then the
similarity measure s is defined as

s(VA,VB) =
1
2

(
|VA∩VB|
|VA|

+
|VA∩VB|
|VB|

)
(1)

where VA,VB ⊂ R3 and | · | denotes the number of elements of a set.
Note, that s is symmetric. This is necessary to ensure that the order
of comparison does not matter. Moreover, s is a volumetric measure
meaning that the more overlapping volume relative to their size two
features have, the more similar they are. The reason for similarity be-
ing computed relative to the size of a feature is to obtain a high rank
not only for features with high overlap but also for pairs of small fea-
tures with similar size. During similarity computation a user defined
threshold filter is applied to suppress insignificant similarity relation-
ships.

For the descriptions of the interaction with the contour trees in Sec-
tion 4.3, we need to generalise the concept of a largest contour to
include more than one critical point. Therefore, we define the gen-
eralised largest contour to be the largest contour bounding a region
containing the critical points of a connected subtree of the contour tree
but no other critical points. This corresponds to the largest contour for
a simplified version of the contour tree where the subtree is simplified
to a leaf edge.

In order to avoid any of the perceptional issues with open contours
mentioned in Section 1 we close open contours via the boundary This
clearly indicates which side of the drawn contour is meant by exploit-
ing human perception of objects [29]. By closing an open contour,
we are visually creating a three-dimensional object instead of an open
surface. In the case of an arbitrary isovalue an additional parameter
we call direction is needed to decide whether the upstart or downstart
region of a contour is meant. Upstart and downstart have been defined
by Carr et al. [7] since terms like above and below do not apply to
a contour in general. Nor do inside and outside for open contours.
However, an upstart region is a region only reachable from the con-
tour by paths that initially ascend from the contour and never return
to it. Once the direction has been fixed, terminology like inside and
outside have meaning even for contours intersecting the boundary, i.e.
open contours. In the special case of largest contours the choice of the
direction is clear. If isosurfaces are used the parameter need to be de-
fined manually. The advantage is immediately obvious as the created
closed objects represent the parts of the data where the value is higher
or lower than the specified isovalue, respectively.

A contour is a connected component of an isosurface, but in com-
bination with direction it is a bit more subtle: Due to the direction we
have a definition of what is inside and outside. Now, with the defi-
nition of inside, contours represent individual objects not defined just
by the isovalue rather than the contour tree because they may include
regions above and below the isovalue of the contour. This is useful in
applications where contours actually encode spacious objects.

4.2 Similarity Browser Window
The thumbnail gallery (see e.g. Figure 2(b) left part) shows preview
images rendered for each feature pair exhibiting a significant similar-



(a) λ2 Contour Tree (b) Similarity Browser (c) Pressure Contour Tree

(d) Main Render View

Fig. 2. Interface overview Up: Figure (b) shows the selected feature pairs in the Similarity Browser window. Figure (a) and (c) show the respective
contour tree views with the according largest contours marked in each tree as highlighted in red and green. Bottom: Rendering of matched
contours as selected in the Similarity Browser. The red surfaces represent contours in λ2 field, whereas the green surfaces belong to contours in
the pressure field.

ity, to allow for a quick overview of the shapes of the matched features.
In the graph view (see e.g. Figure 2(b) right part) on the other hand we
employed information visualization techniques to show all relation-
ships between features. From the two disjoint sets of features a bipar-
tite graph is constructed. Each set is sorted by volume in descending
order and displayed in a column where boxes represent the individual
features. Now, for each feature pair a thin, light grey edge connect-
ing the respective features is inserted into the graph. Three different
colour pairs are provided by buttons in the lower left corner of the
similarity browser for cases where a differentiation between matches
is necessary. The provided colour pairs have been chosen to be com-
plementary colours to allow for high contrast [29]. If a thumbnail is
selected, the two corresponding features are assigned colours respec-
tive to the chosen colour pair. The according edge in the bipartite
graph is marked, drawing it in thick black, and the boxes represent-
ing the corresponding features in the graph are filled with the assigned
colour. Since features are defined through largest contours, the two
contour tree views (see Section 4.3) are updated as well, drawing the
node of the extremum and the according edge in the respective colour.
Moreover, features are drawn in the main render view using a modified
path seed approach [6]. Since we are only extracting largest contours,
the grid edge joining a connected component and the saddle vertex,
as part of the according path seed, identified by the union-find data
structure will suffice. The larger of the two overlapping features, i.e.
the one with the higher vertex count, is drawn translucently to make
features visible which might be fully or partly enclosed by the contour
of the larger feature (see e.g. Figs. 7 and 2(d)).

4.3 Interactive Contour Tree Views
In addition to the powerful automatic comparison provided by the sim-
ilarity browser described in the previous section, our interface allows
the user to interactively explore relationships between features in two
scalar fields through two linked contour tree views.

4.3.1 Contour Tree Interaction and Interface Elements
Depending on the direction, which can be chosen from a drop down
box in the lower left corner (see e.g. Fig. 2(a)), clicking on a node of
a contour tree causes a certain subtree to be extracted and highlighted.
The according generalised largest contour is visualized in the main
render view. All features (largest contours) of the second tree inter-
secting the contour selected in the first tree are highlighted (see Fig. 3
right) and drawn in the main render view.

Both, highlighting and drawing the contours, are carried out with a
colour which can be selected by clicking on one of the buttons located
in the lower middle. The colours provided comply with Ware’s unique
hues [29]. They are chosen to have low saturation for the first tree,
where the selection is made, to be distinguishable from the colours of
the automatically extracted contours of the other tree (see Fig. 3). In
addition, we decided to draw the contours of the first tree translucently
as the automatically extracted contours of the second tree are usually
smaller and fully or partly covered. Using the same hue for contours
extracted in the process of a manual selection shall communicate that
the contours have some sort of relation, which, in our case, is volumet-
ric similarity.

Apart from the described colour scheme, saddles in the contour tree



Fig. 3. Close up views of contour trees of density and pressure for blunt
fin dataset. The left image shows two marked subtrees: the green and
the red one. Right image shows the corresponding largest contours
highlighted in the second contour tree.

are represented by boxes, minima by horizontally aligned ellipses and
maxima by vertically aligned ellipses. Finally, straight lines are con-
necting these nodes.

The procedure for subtree extraction used for a selected node works
as follows: From any manually selected node, we traverse the subtree
in the chosen direction. Thus, we extract the subtrees connected to
the node by a descending superarc if downstart is selected or subtrees
connected by an ascending superarc if upstart is selected. In either
case, the selected node itself and superarcs going out in the opposite
direction are extracted as well. The latter are used to extract seeds for
the surfaces displayed in the main render view (see Section 5). During
the subtree extraction process all vertices of the highlighted subtrees
are collected and transfered to the other contour tree. There, all largest
contours, i.e. features, belonging to the transferred vertices are iden-
tified based on the method described in Section 5.1 and visualized as
described above.

4.3.2 Advanced Interaction
So far, we have only described the results obtained from a click on one
node. However, there are more complex types of selection possible.
Consider a complete subtree to be highlighted with a certain colour
(e.g. red) due to the selection of a saddle. Now, it is not only possi-
ble to mark a different independent subtree by selecting an appropriate
node, but also to select a node in the already highlighted subtree. In the
latter case, the subtree corresponding to the last selected node is des-
elected. If the same node is selected again but with a different colour
(e.g. green), the result is a subtree highlighted in the new colour in
the first subtree highlighted with the first colour (see Fig. 3 left). If
the disable button is not selected the render view will, of course, show
the corresponding contours in the correct colours. There is no restric-
tion in the combination of colours and selecting subtrees as described
above. Thus, the user is provided with a completely flexible interac-
tive interface to the contour tree, its corresponding generalised largest
contours and combinations of the latter.

One of the standard tasks using the interface is to mark a certain sad-
dle and inspect its generalised largest contour. Among other things,
this enables the user to investigate the effects of simplifications be-
cause the generalised largest contour of a saddle corresponds to the
largest contour of an extremum that would result from the simplifi-
cation of the complete subtree of the saddle collapsing it to one ex-
tremum.

5 IMPLEMENTATION DETAILS

5.1 Similarity Measure
In order to compute the similarity measure defined in Equation (1)
we need the volume of each of the features and the volume of the
region where the two features overlap. The volume of each feature in
both scalar fields can be approximated by counting the vertices in the

Table 1. Parameter settings used for the different datasets
Data set Variable Percent of

vertices
Similarity
threshold

Delta wing Eddy viscosity 0.03% 0.2
Signed helicity 0.03%

Turbine draft tube λ2 0.1% 0.2
Pressure 0.02%

Cuboid λ2 0.03% 0.2
Pressure 0.01%

Blunt fin Density 0.1% 0.2
Pressure 0.1%

associated vertex set. If the associated vertex sets of two features are
intersected we obtain an approximation of the shared volume.

This is achieved by running through the features of scalar field SB
and label the vertices of the associated vertex set with a unique feature
identifier. The result is a simple lookup table that maps vertex ID’s
to feature ID’s. Now the algorithm runs through the features in scalar
field SA looking up every vertex of the associated vertex set to which
feature in scalar field SB it belongs. Bearing this in mind, we can
now identify overlapping features and simply count the shared vertices
for every pair of overlapping features. It is of course possible to use
more sophisticated methods, for example to weight the vertices with
the volume of the cells connected to that vertex, to account for grids
where features extend over different cell scales. However, the vertex
based method performs completely sufficient for our datasets. Thus,
in terms of quality, there was no need for a more complex and time
consuming method.

In terms of speed, the algorithm takes O(n) time, where n denotes
the number of vertices in the grid. The first stage of the algorithm is to
label all features in scalar field SB which takes time proportional to the
number of vertices in the features, which is O(n). The second stage
is to perform a lookup for every vertex which belongs to a feature
of scalar field SA which is, again, an O(n) task. Therefore, overall
complexity for computing all similarities is O(n).

5.2 Thumbnails
For the automatic thumbnail generation mentioned above, a suitable
perspective must be chosen for each of the images. This is achieved by
performing a standard principal component analysis (PCA) for the ver-
tices belonging to both features to be depicted in the thumbnail image.
From the obtained PCA vectors the one with the smallest eigenvalue
is chosen to be the viewing direction of the camera. The remaining
two vectors, which are perpendicular to the viewing vector, exhibiting
higher eigenvalues corresponding to higher variance thus maximise
projection area on the screen. The camera is then adjusted to look at
the mean of the vertex positions. Finally, the bounding box of the ver-
tices is obtained to fit the contours to the size of the desired thumbnail.
Examples can be found in Figures 2(b), 4(c) and 5(c).

5.3 Overlapping Boundary Surfaces
In the process of comparing two scalar fields it might be the case that
boundary surfaces of contours overlap. Therefore, the boundary sur-
face of the contour with the higher vertex count is moved away from
the grid boundary because we assume that this contour would enclose
the one with the smaller vertex count. However, every vertex of the
surface to be moved away that was involved in the boundary surface
extraction is moved along its vertex normal, which is obtained by aver-
aging the surface normals of the neighbouring triangles. These are the
same vertex normals as used for shading. As a heuristic, the distance
by which the vertices are moved away from their original position is
determined by the first edge found in the first cell of the dataset. Al-
ternatively, the distance can be defined manually.

6 RESULTS

In this section, we will provide a number of examples that demonstrate
the discussed visualization methods on the CFD application datasets



(a) λ2 Contour Tree (b) Pressure Contour Tree

(c) Similarity Browser (d) Front (e) Left (f) Overview

Fig. 4. Turbine data set: (a),(b) Contour trees for pressure related to vortices. (c) Similarity Browser shows selected contours. Not all vortical
structures have been selected to avoid visual clutter in render view. (d)-(f) Different views of the selected contours.

presented in Section 2. Most of the datasets are given on hexahedral
grids while one, the delta wing, is given on an unstructured grid with
mixed cell types. As the original contour tree implementations can
only handle simplicial meshes, we perform a preprocessing step to
convert all grids using an algorithm proposed by Wiebel [32].

Table 1 lists the percentage thresholds used for simplifying the con-
tour trees of the different scalar fields and the minimal similarity of
thumbnails shown in the browser. The simplification thresholds are
given as percentage of the number of total vertices in the dataset which
are easier to handle since different quantities have different units and
scales. As already mentioned, in terms of largest contours, the thresh-
old can be interpreted as a lower bound for the size (number of ver-
tices) of largest contours appearing in the contour tree.

Cuboid The cuboid dataset is an example where a strong corre-
spondence between different scalar quantities can be found. The ren-
der view in Figure 2(d) shows overlapping contours of λ2 and pres-
sure. It is known that both exhibit small values in regions of vortical
behaviour. This fact can be easily identified by the contours drawn
in the render view. Each pair of corresponding contours identifies the
region of a hairpin vortex.

We have labelled four different contour pairs with letters in all views
to show the connections of the views. For example, consider the hair-
pin vortex labelled b in Figure 2(d). It is easily recognisable in the
similarity browser 2(b). The browser also shows that the contours of
λ2 and pressure belonging to the hairpin vortex have a large similar-
ity. This confirms what can be seen in the render view. The graph
view reveals that the overlapping contours are the third largest of λ2
contours and the second largest for pressure. Additionally, it can be
seen immediately that the considered contours have a one-to-one cor-
respondence, i.e. no other contours overlap them, as both nodes have
only one edge connected to them. Finally, the contours are also la-
belled in the contour trees (Figures 2(a) and 2(c)). The relations of the
different contours within a single scalar field and the scalar values (see
the scale on the right side of Figure 2(c)) become clear in this view.

Obviously, the two vortices closest to the cuboid are the strongest as
they exhibit the lowest λ2 and the strongest pressure minima. This
is not surprising, as the vortices are induced by the cuboid and are
damped by the surrounding flow downstream.

Turbine Draft Tube Figure 4 illustrates the application of the
comparison techniques provided by the similarity browser to the tube
dataset. The browser shows a large number of thumbnails for sim-
ilar features in λ2 and pressure. While the number and the size of
the contours depend on the chosen simplification threshold, the large
number of matches still indicates a strong correlation of the compared
quantities. The graph view of the browser shows that most feature cor-
relations are one-to-one as desired. There are only few nodes with two
edges connected to them and no nodes of higher degree. The selected
overlapping features are shown from three different perspectives in im-
ages 4(d) to 4(f). It is easily visible that both quantities, λ2 (red) and
pressure (green), nicely capture the main vortex that is connected to
the upper end of the tube. Even the second largest vortex, visible in
the upper right part of Figure 4(d), is identified by large overlapping
contours.

Delta Wing Without further knowledge we applied our scalar
field comparison technique to the delta wing data set. We compared
some of the available scalar variables. Not surprisingly vorticity and
pressure yielded nicely matching contours covering the vortices. A
comparison of signed helicity2 and eddy viscosity, however, was more
interesting. While we already knew of the connection between he-
licity and vortex breakdown as mentioned above, we found that eddy
viscosity is also connected to the phenomenon. The similarity browser
(Figure 5(c)) shows only four contour pairs with a similarity above the
user selected threshold of 0.2. Selecting the two pairs with the sig-
nificantly larger similarity yields the images in Figures 5 and 6. The

2Throughout this paper signed helicity refers to the dot product of the ve-
locity and the vorticity vectors: v · (∇× v)



(a) Helicity Contour Tree (b) Eddy Viscosity Contour
Tree

(c) Similarity Browser (d) Overview

Fig. 5. Contour trees for helicity (a) and eddy viscosity (b) of delta wing
dataset. Selecting helicity maximum and minimum in (a) causes two
viscosity maxima in (b) to be highlighted. Image (d) shows the corre-
sponding largest contours in the main render view. The vortex break-
down bubbles are immediately visible. Image (c) shows the similarity
browser.

(a) Left Bubble

(b) Right Bubble

Fig. 6. Close up renderings of the two vortex breakdown bubbles of the
flow around the delta wing.

overlapping parts of the contours clearly identify the two vortex break-
down bubbles (Figure 6).

We contacted our cooperation partner from the German Aerospace
Center who performed the simulation to dicuss our exploratory find-
ings. He told us that small scale turbulence appears during the tran-
sition from the vortex to the bubble. As eddy viscosity describes the
viscosity caused by turbulence, this means that it is indeed connected
to vortex breakdown.

As explained above, we found the connection by using the simi-
larity browser. Considering images 5(a) and 5(b) it is obvious that
the connection is also detectable by just using the contour tree views.
The two signed helicity extrema belonging to the bubbles are clearly
standing out in Figure 5(a). Selecting one of the extrema causes the
corresponding eddy viscosity maximum (also very prominent) to be
highlighted in the second contour tree view (Figure 5(b)). The con-
tours in the main render view are the same as when using the similarity
browser, thus making the bubbles immediately visible.

Blunt Fin The blunt fin dataset is a perfect example where the
comparison of feature related quantities immediately reveals the fea-
ture itself. As mentioned, it is known that a shock can be described by
a high gradient in density and pressure [27]. Indeed, the comparison of
the topology of pressure and density immediately identifies the shock
in front of the fin as the contours with the largest similarity values (see
Figure 7) in the similarity browser.

7 CONCLUSION AND FUTURE WORK

We have described the application and implementation of a new inter-
face for the comparison of two scalar fields and applied it to a number
of fluid flow datasets. The comparison is based on overlapping largest
contours. The largest contour around a local extremum is defined as a
feature of the scalar field. The spatial overlap of such features between
different scalar fields is calculated in a symmetric way and called sim-
ilarity. Our system calculates all overlapping features based on simpli-
fied contour trees. The found overlaps are sorted based on similarity
and presented in the similarity browser. This browser uses automat-
ically generated thumbnail images and a bipartite graph to visually
represent the found similarity of the two scalar fields. Enriched with
linked views of the two underlying contour trees and a 3D render view,
we obtain an interface for visual comparison.

Using the interface we were able to visualize the relation of certain
scalar quantities to the existence of vortices. Additionally, we ”redis-
covered” the connection between vortex burst and high eddy viscosity
by an exploratory usage of the browser. The graph view in the similar-
ity browser shows the connections between different features allowing
to search for one-to-one or one-to-many correspondences of contours.
Furthermore, linked contour tree views allow for a more detailed in-
teractive comparison analysis. Although we focused on flow data in
this paper, we believe that the analysis of other data, for example from
medical imaging, can benefit from the presented techniques as well.

Albeit the chosen similarity measure of spatial overlap worked well
and is intuitive, dependencies which are not manifesting in such a way
are not detected. Thus, different or more sophisticated similarity mea-
sures might be better suited for other domains. The same argument ap-
plies to the simplification measure where different measures like per-
sistence or hypervolume might yield better results for other domains
or different problems.

We plan to augment the contour tree views with thumbnails. Unfor-
tunately, extending our work to time-varying data, i.e. time-dependent
contour trees, is not straight forward and thus is also part of future
work. As mentioned throughout the paper we are only dealing with
simplicial meshes so far and use simplicial subdivision to be able to
treat non-simplicial meshes. We are aware of the possible sampling
artifacts [4] and plan to extend our method to be able to treat hexahe-
dral cells directly as described in [5]. Finally, the overlapping contour
display could benefit from the application of a technique presented by
Weigle et al. [31]
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