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Abstract
Scientists working with uncertain data, such as climate simulations, medical images, or ensembles of physical simulations,
regularly confront the problem of comparing observations, e.g., to identify similarities, differences, or patterns. Current
approaches in comparative visualization of uncertain scalar fields mainly rely on juxtaposition of both data and uncertainties,
where each is represented using, e.g., color mapping or volume rendering. While interpretation of uncertain scalar data from
visual encodings is already cognitively challenging, comparison of uncertain fields without explicit visualization support
adds a further layer of complexity. In this paper, we present a theoretical framework to devise and describe a class of
techniques that directly visualize differences between two or more uncertain scalar fields in a single image. We model
each such technique as a combination of one or more interpolation stages, with the application of distance measures on
random variables to the resulting distributions, and an appropriate visual encoding. Our framework captures existing methods
and lends itself well to formulating new comparative visualization techniques for uncertain data for different visualization
scenarios. Furthermore, by modeling uncertain scalar field differences as random variables themselves, we enable additional
opportunities for comparison. We demonstrate the usefulness of our framework and its properties by applying it to effective
comparative visualization techniques for several synthetic and real-world data sets.

Keywords Uncertainty visualization · Comparative visualization · Ensembles · Visualization framework

1 Introduction

The integration of uncertainties into data models is a
common technique in the field of scientific research. A
prominent analytical challenge commonly encountered by
researchers involves the comparison of uncertain data, e. g.,
in the research domains of meteorology [43], high-energy
physics [15], computational fluid dynamics [19], and medi-
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cal science [34]. Although there are existing purely statistical
tools designed for the comparison of uncertain data [5], visu-
alization plays a pivotal role in effectively presenting and
exploring intricate data sets. To effectively tackle this chal-
lenge, researchers require robust tools capable of conducting
comprehensive comparative analyses. Visualization stands
as a crucial element in unraveling insights from complex
data sets. Harnessing the power of comparative visualiza-
tion methods can significantly augment researchers’ ability
to delve into uncertain data, uncover patterns, and extract
valuable insights. As a result, Kamal et al. [21] suggested
comparative uncertainty visualization as a future research
direction. Throughout our literature research (cf. Sect. 2), we
identified that the current work on visualizations in explicit
encoding lacks methods to directly visualize the difference
between two or more scalar fields with uncertainty. These
studies have mostly focused on the comparison of distinct
features. However, a comparison of the entire data set in
explicit encoding is a useful method for visualizing subtle
differences [32].

This paper presents a theoretical framework for describing
a class of techniques for directly comparing between scalar
fields with uncertainty, which allows to quicklyidentify dis-
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/similarities. Existingmethods can be understood in the three
steps of the framework. The steps and methods fit well into
the parts of established models of the overall visualization
pipeline [18, 55]. The framework helps to think and reason
about the visual comparison of scalar fields with uncertainty
using the explicit encoding paradigm. To evaluate the use-
fulness of the framework we discuss existing methods in the
context of the framework. In addition to other insights, the
discussion leads to an additional contribution of the paper by
indicating a gap in the research. We make a first step toward
closing this gap—visualization of uncertain distances—by
implementing a first basic method for this comparison. More
research for a very expressive visualization is needed here.

We demonstrate the idea of the proposed framework using
a synthetic scalar field with uncertainty. By applying our
framework to real-world data sets, we explain how to use it
to create comparative visualizations with uncertainties. By
supporting the generation of dense comparative visualiza-
tions in the explicit encoding design [13], this framework
serves as a blueprint for producing initial overview visual-
izations steering further exploration of the comparison of
data with uncertainty. Our contributions to the field of com-
parative uncertainty visualization are the following:

• Proposal of a framework for comparative uncertainty
visualization employing statistical and probabilistic dis-
tance functions to encode relevant relationships.

• Categorization of the upsampling methods and distance
measures incorporated within this framework and analy-
sis of their impact on the resultant visualization.

• The practical implementation of instances of this frame-
work on authentic data sets, encompassing real-world
comparison scenarios.

In Sect. 2, we summarize the related work on comparative
visualizations with uncertainties and give a brief overview of
the three methodological sub-fields it is built on. This sec-
tion is followed by the main contribution, the definition of
the framework, and a classification of the employed meth-
ods (distance measures and upsampling methods). Section5
presents instances of this framework on synthetic and real-
world data sets. Further, Sect. 6 is a best-practice guide to
allow creating the reader its own comparative uncertainty
visualizations. This article then continues in Sect. 7 with a
discussion of the framework and a summary of its limita-
tions. Finally, this article concludes the proposed framework
in Sect. 8.

2 Related work

The goal of comparative visualization techniques is to iden-
tify similarities or dissimilarities between different data sets.

Gleicher et al. [13] defined a taxonomy for this task that is
not based on the chart type but on three layout strategies
that allow the grouping of existing methods: superposition,
juxtaposition, and explicit encoding. These categories also
apply to the visual comparisons of uncertain or ensemble
data. LYi et al. [32] further refined this taxonomy through
a systematic review. Notable surveys that mostly follow
this taxonomy have been published for meteorology [43],
ensemble data [57], spatial 3D and 4D data [24], and multi-
faceted scientific data [23]. For our review of state-of-the-art
methods, we incorporated research focused on ensemble
comparisons. This is a common method for analyzing an
unknown distribution because ensembles can be seen as sam-
ples from an unknown distribution. This has been applied in
research areas such as meteorology [43] and modeling of
real-world phenomena through computer simulation mod-
els [57].

Juxtaposition is a commonly used visualization design
presenting visualizations in a side-by-side view to compare
them to each other. This technique uses the user’s cogni-
tive capabilities to identify differences and similarities. Its
frequent usage can be attributed to its simplicity and straight-
forward implementation which is applied by many authors
to compare their methods to others, e. g. [31, 39, 42]. Fur-
thermore, authors favor the juxtaposition layout because it
preserves the original visualization, enabling the presenta-
tion of novel methods while also serving as a component in
the comparison with other methods. However, it is important
to note that comparing complex data using this design layout
can be a tedious task. This is especially true for the identifi-
cations of subtle differences while concurrently interpreting
them.

Superposition reduces the cognitive load of the user
through presenting the data in aligned positions. Thus, an
implicitmental registration of the presented scenes, like in the
juxtaposition, is now explicit in the visualization. This allows
for a "quick and easy" comparison [10] since the pertinent
visual elements are closely arranged, which probes particu-
larly advantageouswhen the emphasis lies in spatial disparity
comparison.However, a significant drawback of this layout is
the potential for visual interference, subsequently giving rise
to scalability challenges. This can escalate especially when
multiple data attributes are superimposed resulting in visual
clutter.

Explicit encoding transforms two or several pieces of
information into one desired characteristic quantity, which
is then visualized. This is achieved through metrics, which
allow the explicit comparison of the data to a desired rela-
tionship. This eliminates the need for the viewer to engage
in a cognitive comparison or seek out differences, as these
have already been computed. Such an approach is particu-
larly advantageous when the focus is on discerning subtle
disparities [28]. However, while applying solely this design
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Fig. 1 Overview of the framework, which illustrates the major stages:
upsampling, distance, and interpolation/visualization. Each of the two
random fields is passed to one of the upsampling methods, which is
followed by a distance calculation processing both upsampling results,
and an illustration of the distance through a visualizationmethod, which

might employ an additional interpolation. The dashed arrows indicate
that visualizations in the explicit encoding paradigm need additional
context from the upsampled scalar fields with uncertainty to help inter-
preting the presented distances

layout the underlying data is not present which results in a
decontextualization, subsequently the interpretation of the
observed difference is more challenging [54].

In the past, several authors worked on the issue of visu-
ally comparing scalar fields with uncertainty or ensembles
in an explicit encoding. However, we identified a gap to
directly visualize the difference of two or more scalar fields
with uncertainty. The following related works are methods,
which are most related to a direct comparison and visualiza-
tion in an explicit encoding. Köthur et al. [26] extended the
windowed cross-correlation matrix to time-varying ensem-
bles to visualize the statistical properties of each cell as
a glyph. Obermaier et al. [36] used volume rendering to
encode different properties to present similarities or dis-
agreements of time-varying ensemble trends. Therefore, they
identified and tracked trends through time to present the sta-
tistical properties compared to the whole ensemble. Shu et
al. [52] defined behavior vectors to identify similar clusters.
Given a target location, a behavior vector is the collection
of differences of all ensembles at this location. These multi-
dimensional vectors form clusters in neighboring regions,
which are visualized in a dense overview visualization. Rub-
ner et al. [46] introduced the earth mover’s distance and
used multi-dimensional scaling to explore image databases.
In addition, this allowed to search an image database based
on color-distribution and texture spaces.

The framework we present is built on three actively
researched, major research areas in the context of visual
comparison: interpolation of scalar fields with uncertainty,
distance of random variables, and visualization of (uncer-
tain) scalar fields. All the existing methods of those research

areas can be used in our proposed framework.One of themost
used methods to compare scalar fields with uncertainty is to
illustrate them in a juxtaposition using contouring or volume
rendering techniques. Pöthkow et al. [40, 42] proposed ways
to present the positional uncertainty of iso-contours. In addi-
tion, Pfaffelmoser et al. [39] presented an incremental update
scheme in the volume ray-casting,which considers the uncer-
tain data. Further improvement in the iso-contour/iso-surface
of uncertain data is done by Athawale et al. [1–3]. Another
work in presenting uncertain three-dimensional datawas pre-
sented by Djurcilov et al. [11] through mapping the mean
values to color and uncertainties to opacity. This allows to
adjust the volume rendering to show uncertain areas more
opaque, while illustrating values with high certainty. The
reader is referred to the present surveys for an in-depth sum-
mary about uncertainty visualization [6, 7, 21, 38].

The research on interpolating scalar fields with uncer-
tainty is spread over different communities andfields, namely
mathematics, geographic information systems, and visual-
ization. For now, we only focus on the interpolation methods
introduced to the visualization community, as even a brief
overview of all methods would be beyond the scope of this
article. Pöthkow et al. [40] explain an interpolation method,
the Gaussian probability density function (PDF) interpola-
tion, which interpolates the moments (mean and standard
deviation) of Gaussian distributions in their work. Sakhaee
et al. [47] took a different approach and identified the close
relation of box splines to the weighted linear combination of
random variables in their volume rendering algorithm. The
interpolation method kriging was introduced into the con-
text we discuss by Schlegel et al. [49]. Kriging is a Gaussian
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process regression of a set of random variables at arbitrary
positions. Besides the definition of Schlegel, there existmany
variations in kriging [30]. Hollister et al. [17] introduced
two interpolation methods, namely gaussian mixture model
(GMM) PDF interpolation and quantile PDF interpolation.
The first one interpolates the parameters of a Gaussian mix-
turemodel,while thequantile PDF interpolation interpolates
the probabilities of the quantiles of the PDFs. Further inter-
polation methods can be found in the work of Myers [35],
and Li and Heap [30].

Distance metrics on random variables are not new to the
visualization community, as some authors used statistical
distance functions to illustrate errors, differences, or conver-
gence criteria to assist their argumentation. Rubner et al. [46]
used the earth mover’s distance (Wasserstein distance) as
a measure when calculating the distance of color distribu-
tions and textures. In addition, Siddiqui et al. [53] used the
same measure to present the convergence of their progres-
sive approach in diffusion tensor imaging by calculating the
distance of histograms, while Hoand et al. [16] tested dif-
ferent metrics to calculate the error of histograms in their
analysis of the trade-off between reducing image precision
or resolution. In contrast with our proposed framework to
compare a whole scalar field with uncertainty, the aforemen-
tioned publications only process two random variables, e. g.,
two distributions [46] or histograms [16, 53]. However, as far
as we are aware, there is not a published work in the litera-
ture that discusses the comprehensive application of distance
functions on an entire scalar field with uncertainty.

Cha [9] presents a survey on statistical distance or similar-
ity measured on random variables. In addition, Grigorenko
et al. [14] recently presented two methods to construct prob-
abilistic distance functions from statistical distance metrics.
Please note, probabilistic distance functions can be charac-
terized by probabilisticmetric spaces [51], which are initially
introduced as statistical distance spaces [33], which should
not be confused with the statistical distance functions sum-
marized by Cha and further used as fuzzy metrics [27]. We
opt to term this class of functions probabilistic distance func-
tions to emphasize their distance of probabilistic nature.

3 A framework for visual comparison of
scalar fields with uncertainty

Designs in explicit encoding show relationships between
objects explicitly in a single visualization [13]. This requires
the knowledge of the relationships of interest and a way to
compute them explicitly. For scalar fields with uncertainty,
the objects of interest are the random variables on the grid
points and the relationship of interest is the dissimilarity
between them.

Figure1 shows an overview of the introduced frame-
work, which processes two scalar fields with uncertainty
through a three-stage pipeline to create a comparative visual-
ization in explicit encoding. The three stages—upsampling,
distance, and interpolation/visualization—classify and orga-
nize the necessary techniques to create dense representations
of differences. Depending on the distance function utilized
in the distance stage, the resulting visualizations can con-
vey various meanings, such as (dis)similarities or average
mutual information [29]. The benefit of dense visualizations
in explicit encoding design is the direct identification of dif-
ferences that result in a fast location of areas of interest. In
order to be able to properly interpret the dense visualization
in the explicit encoding, the resultant visualization should
contain a context from one or both inputted scalar fields with
uncertainty.

The distance stage is the core of this framework allow-
ing to encode a desired relationship into a scalar field
with or without uncertainty, which then can be visual-
ized by the interpolation/visualization stage. The interpo-
lation/visualization stage is a twin stage because many of
visualization techniques for scalar fields highly depend on
interpolation, e. g., volume rendering and marching cubes.
In the comparison of scalar fields with uncertainty, interpo-
lation of the distance can lead to misleading visualizations.
Figure2 shows a simple one-dimensional example of interpo-
lating two random variables before (right column) and after
(left column) distance calculation. In these two scenarios,
the final visualization (bottom row) differs. To address this
challenge, our framework starts with an upsampling stage
that involves interpolating the scalar fields with uncertainty
prior to computing the distance of the desired relationship.
To avoid confusing the term interpolation of the inter-
polation/visualization stage with the interpolation of the
upsampling stage, we use the term upsampling if we write
about the upsampling stage and use the term interpolation
otherwise.

The three stages of our framework fit well into the steps
commonly considered to be constituent parts of the over-
all visualization process, that is, the so-called visualization
pipeline [55, p. 124][18]. Thus, the framework can be eas-
ily used in the context of existing visualization systems or
approaches. Specifically, the upsampling and distance stages
can be seen to belong to the filtering part of the pipeline,
whereas the interpolation/visualization stage goes with the
mapping part.

The subsections of this section provide an in-depth exposi-
tion of each stage and offer an examination of the underlying
processes. Of particular note is the grouping of methods
within each stage, predicated on shared characteristics that
wield substantial influence over the resulting visualization.
The systematic categorization of these methods based on
commonalities not only facilitates a more profound under-
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Fig. 2 Left column illustrates the distance D (bottom) as red points of
the two distributions f and f ′ at the positions s1, s2 (top). The orange
line in the bottom plot indicates the interpolation of the distances D.
The right column (top) illustrates an upsampling of the same distribu-

tions f , f ′, while the continuous lines indicate the mean and the dashed
lines indicate the standard deviation. The bottom of the right column
presents the distance D∗ of the interpolated uncertain distributions

standing but also reveals essential patterns that govern
visualization. Section4 concludes the description of this
framework by summarizing the existing interdependencies
between methods spanning different stages.

3.1 Scalar fields with uncertainty

Scalar fields with uncertainty are defined as grids with ran-
dom variables on their nodes. Random variables can be
modeled through a PDF, by a histogram, or as a Gaussian
distribution to name a few commonly known possibilities.
Let S be a subset ofR2 orR3 that contains a finite number of
positions si , . . . , sN ∈ S. At each position, a randomvariable
X1, . . . , X N defines the grid attributes. For simplicity, we
omit the covariance between each random variable and leave
its inclusion to future work. Furthermore, let two scalar fields
with uncertainty X = {X1, . . . , X N },Y = {Y1, . . . , YN } be
defined at the same positions s1, . . . , sN ∈ S. The modeling
of the two scalar fields with uncertainty is of minor interest
because the random variables on the grid points can be con-
verted to different representations. For example, themoments
of a Gaussian distribution (mean, variance) can be used to
create histograms or PDFs. The desired representation of
random variables is primarily dependent on the upsampling
method. Some upsampling methods are restricted to Gaus-
sian distributions or histograms.

3.2 Upsampling stage

Upsampling, a fundamental concept in signal processing and
data analysis, involves the approximation of a continuous
function based on a given set of discrete samples. It aims to
create an approximation that emulates what the continuous
functionwould have been had it been sampled at a higher rate.

The upsampling process is characterized by a universal rate
increase factor denoted by L , which is typically an integer
that determines the desired target sampling rate.

All the upsampling methods that can be embedded in the
upsampling stage return a scalar field with uncertainty. Hol-
lister et al. [17] formulated three criteria that an upsampling
method should fulfill for scalar fields with uncertainty: (i)
the upsampled PDFs should not introduce additional modes,
(ii) the lower limit of the upsampled variance should have
a smaller variance at the observed grid points, and (iii) the
upsampled values should be PDFs. In addition, Schlegel et
al. [49] argued that (iv) the variance between the grid points
should increase as information of the unknown distributions
toward the center accumulates to a more uncertain mean
value. Unfortunately, the literature lacks definitions of con-
straints on the properties that the covariance should follow
for the upsampling process, but this lack does not restrict this
framework to the usage of upsampling methods consider-
ing the covariance. These restrictions must follow the target
application. For the interested reader, Sect. A in appendix
shows three exemplary upsampling methods, which satisfy
different criteria.

Following the statement of Pöthkow et al. [41], we advise
in modeling uncertain scalar fields with nonparametric mod-
els and upsample them with the supporting methods to aim
for an optimal fit. However, only a few upsampling methods
allow upsampling of non-Gaussian distributions. Section4
gives an overview of a few upsampling methods and which
representations they support.

3.3 Distance stage

A distance is a quantitative measure that relates to two
points, which in our context are random variables. Intu-
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itively, when we consider the distance between two points in
a two-dimensional plane, we often conceptualize it as a rep-
resentation of the spatial gap that separates them. However,
when the two-dimensional plane corresponds to a feature
space, this interpretation changes into an assessment of how
dissimilar these points are in terms of their characteristics.
The application of statistical distance functions extends this
concept to random variables, offering a means of gauging
the dissimilarity between them. In this way, distance func-
tions become invaluable tools for summarizing the disparities
between the corresponding points within two scalar fields
with uncertainty, providing a holistic overview of areas of
interest and aiding in the quantitative assessment of data rela-
tionships.

Distance functions can be characterized and classified
based on four axioms of a metric. Depending on the accom-
plishment of the four axioms, a distance function offers
varying properties, whereas it is only called a metric if
all four axioms are satisfied. Formally, a distance function
d : M × M → R is a metric on the set M if it satisfies the
following axioms for all points x, y, z ∈ M [8]:

(d1) (Identity) The distance from a point to itself is zero:

d(x, x) = 0

(d2) (Positivity) The distance between two distinct points is
always positive:

d(x, y) > 0, if x �= y

(d3) (Symmetry) The distance form x to y is equal to the
opposite direction y to x :

d(x, y) = d(y, x)

(d4) The triangle inequality or subadditivity holds:

d(x, z) ≤ d(x, y) + d(y, z)

Back in our context of distance functions on random vari-
ables, many prominent similarity measures are not a metric.
For example, the Kullback–Leibler [9] divergence DK L is a
divergence that satisfies only the identity (d1) and positivity
(d2) of the metric axioms. Thus, using the Kullback–Leibler
divergence DK L in our framework, the user should be aware
that the symmetry axiom (d3) is not satisfied. This results
in points Xi ∈ X, Yi ∈ Y not having the same distance
DK L(Xi , Yi ) �= DK L(X j , Y j ) even though the distributions
are equal Xi = Y j , Yi = X j but at a different point si �= s j .
In other words, the resulting visualization encodes differ-
ent values for the two locations, while their distributions are
simply switched. This can lead to misinterpretation, e. g.,

assuming that the distances of both locations differ. How-
ever, the Kullback–Leibler divergence is widely used in the
context of machine learning [29]. Thus, we do not limit our
framework to metrics, but rather motivate researcher to be
aware which axioms a distance function satisfies.

This framework is built to support two classes of distance
functions: statistical distance functions, and probabilistic dis-
tance functions. These two classes of functions describe
the dissimilarity between random variables in different
ways. Statistical distance functions summarize the distance
between two random variables in a scalar value. In contrast,
probabilistic distance functions provide a distribution of the
difference. It should be noted that this article distinguishes
between the term difference, which for random variables
results in a distribution (e. g., a PDF of the difference), and
the term distance, which is a scalar value.Analogous to scalar
values, the difference between two values can be converted
into a distance, e.g., by taking the absolute value of the differ-
ence. This conversion is not that simple for random variables
and thus is done using statistical distance functions.

The axioms of a metric are still applicable for statistical
distance functions because they map two random variables
to a scalar value. However, probabilistic distance functions
return distributions, and thus, the aforementioned axioms are
no longer applicable. Probabilistic distance functions can be
similarly classified based on a distribution function Fpq(x)

using four axioms [51] with the same names. Here, the dis-
tribution function Fpq(x) acting on the random variables p
and q with x ∈ R being a real argument is a probabilistic
distance metric if it satisfies the following conditions [33,
50, 51]:

(D1) (Identity) The distribution function equals one for all x
only if both random variables are equal:

Fpq(x) = 1, for all x > 0 if, and only if, p = q

(D2) (Positivity) The distribution function has only positive
values:

Fpq(x) = 0, for all x ≤ 0

(D3) (Symmetry) The difference between p and q is equal
to q and p:

Fpq(x) = Fqp(x)

(D4) The triangle inequality or subadditivity holds using a
2-place function T :

Fpq(x + y) ≥ T
(
Fpq(x), Fpq(y)

)
, for all x, y ≥ 0

The conditions on the distribution function Fpq(x) have sim-
ilar affects on the resulting visualization like the statistical
distance functions. Thus, researchers must be cautious about
the properties of a distance function.
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Fig. 3 Difference (Wasserstein distance W2 in the center) between two
data sets A ∼ N (μ1, σ

2
1 ) and B ∼ N (μ2, σ

2
2 ) is difficult to interpret,

even if both data sets with uncertainty (means μ and variances σ 2) are
present in the corners of the visualization. The second data set B differs
in its mean μ2 by a positional offset and the variance σ 2

2 is doubled,
compared to the first data set A

3.4 Interpolation/visualization stage

In the final stage, interpolation/visualization, two different
types of inputs must be considered. While scalar values can
be investigated using visualizationmethods for scalar values,
probabilistic differencesmust be illustrated using appropriate
visualization techniques with uncertainty in mind. Illustrat-
ing the differences represented by density distributions is a
challenging task. Fortunately, these density distributions can
be interpreted as scalar fields with uncertainties. However,
the literature lacksmethods that consider these density distri-
butions. Further research is needed to investigate the known
methods that can be used to create expressive visualizations.
As a first step, we present the differences using a basic uncer-
tainty visualization technique, such as the LCP [40, 42].

Besides visualizing solely the distances, the visualiza-
tion should consider the context of at least one data set.
The motivation behind this is the work of LYi et al. [32],
which summarizes the weaknesses of the explicit encoding
paradigm. A major problem in solely visualizing differences
as an explicit encoding is decontextualization. This occurs if
only one specific relationship without the original informa-
tion is presented and the viewer is missing the context of the
original data, as shown in the visualization in the center of
Fig. 3. This visualization shows the point-wise Wasserstein
distance W2 between the two scalar fields with uncertainty.
The differences can be identified quickly, but their interpreta-
tion becomes infeasible without considering the differences
in relation to the original data, as shown in the corners of
Fig. 3.

3.5 Visualization of context

To avoid decontextualization, researchers tend to use hybrid
approaches such as simply juxtaposing the difference and
the original data. A more complex approach to overcome
this weakness is to superimpose at least some details of one
of the original data sets into the visualization of the distance.
This is particularly challenging for complex data, such as
scalar fields with uncertainty. Please note that this frame-
work does not provide a general approach for dealing with
decontextualization, but is motivated by the dashed arrows
in Fig. 1 to consider this issue. We want to share how we deal
with decontextualization of the comparison of scalar fields
with uncertainty.

Following the suggestions of LYi et al. [32] to use
hybrid layouts, such as juxtaposing or superimposing the
distance and the original data sets, which showed superior
performance compared to a single layout, we focused on
superimposing the original data on the explicitly encoded
comparison. However, this framework is not limited to this
approach as it includes the context into a visualization that
can result in multiple linked views. A comparison always
deals with at least two data sets, which opens the following
question: Is it sufficient to only visualize one data set or is it
necessary to present both data sets to include the context of
both in the comparative visualization?

Presenting all, the difference and a context of both data
sets in one visualization are a challenging task if occlusions
should be minimized. This is especially difficult for complex
data with uncertainty, because each data point represents an
entire distribution of values. Embedding of a characteristic
feature may be helpful in reducing the amount of informa-
tion. Fortunately, the literature offers awide range ofmethods
for visualizing features of scalar fields with uncertainty, e.
g., [20, 42, 48, 56]. This approach is applied in Fig. 4 visu-
alizing the difference between both data sets as contours,
while the LCP [40] of both data sets is superposed into the
explicit encoded visualization. Based on a two-dimensional
approach, we identified an approach for three-dimensional
data. This involves visualizing the intersection of the super-
level set of LCPs alongside the volume rendering of the
differences (see Fig. 6). This approach has the handy effect
that an absence of the intersection indicates a difference
between the original data sets and thus leaves space to visu-
alize the difference that occurs at this location.
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4 Framework instances

We now aim to provide constraints on how to build instances
of our proposed framework. The main purpose of this frame-
work is to create comparative visualizations of scalar fields
with uncertainty. These visualizations contain information
about the extent to which random variables differ at each
point. A desired property of the visualization is that all sta-
tistical properties are considered in the comparison.

The methods used in the upsampling stage are highly
dependent on the data that they support. Table 1 provides
an overview of the mentioned upsampling methods and their
applicability for upsampling scalar fields with uncertainty
based on their representation. Versatile upsampling meth-
ods, e. g., ensemble PDF interpolation [49], can be applied
to all representations, but these methods have drawbacks in
terms of their runtime or precision. Please note that not all
upsampling methods consider covariance.

The choice of a distance function used in thedistance stage
is twofold based on the decision of the researcher to inspect
the difference/distance (statistical distance or probabilistic
distance) and which aspect of the dissimilarity of two scalar
fields with uncertainty are of interest. The latter is purely
motivated by the knowledge a scientist wants to gain. There
exist no constraints of distance functions on the used upsam-
pling method or on how the scalar fields with uncertainty are
represented. However, certain representations of the uncer-
tain scalar field offer benefits by allowing a distance function
to compute the distance efficiently using a closed form. This
aspect will be elaborated upon in subsequent sections of this
article.

Finally, the visualization methods of the interpolation/
visualization stage must be able to visualize either scalar
fields representing the distance or scalar fields with uncer-
tainty representing the difference. For scalar data types, the
literature offers many of visualization methods for explor-
ing the dissimilarity of the input data. This is not the case
for scalar fields with uncertainty representing differences as
these distributions have never been introduced to the visu-
alization community. Thus, further research needs to be
conducted on how and if the available methods are able to
properly visualize the differences.

An exemplary instance of this framework is as follows:
Two scalar fields with uncertainty represented as Gaussian
distributions are both upsampled using Gaussian PDF inter-
polation [40] and the point-wiseWasserstein (EarthMover’s)
distance [22] between the interpolated uncertain fields is then
visualized using direct volume rendering(DVR). The result-
ing visualization now contains information ranging from
[0,∞) ∈ R, representing how much the random variables
at each point differ. A value of zero occurs only if both ran-
dom variables at the same position are equal. The more the

random variables differ in their distribution, the higher the
distance between them.

5 Experiments

In our experiments, we showcase the versatility of our frame-
work through comparative visualizations across diverse data
sets from various domains, each with its unique research
question. A prominent synthetic data set to begin with is the
tangle function [25] enhanced with uncertainty to introduce
how the difference in the mean and/or variance affects the
visualization, followed by an experiment in the research area
of climate simulation [37] to determine how the forecasts of
the two simulation models differ. Moreover, we illustrate the
use of this framework within amedical context [44] using the
blood oxygen level dependentBOLD time series to explore
altered brain activity in patients with schizophrenia. In this
context, we performed two experiments: identifying areas of
interest between two subjects and finding subject pairs that
differed the most. Finally, we investigated the climate sim-
ulations [37] again, but now we use a probabilistic distance
function to explore the difference between the two models.
This basic method is the first step toward closing the gap in
the literature by visualizing the difference between two scalar
fields with uncertainty represented by a distribution function.

In addition to presenting how the framework can be used to
create comparative visualizations, we used the framework as
a guideline to talk about creating comparative visualizations.
After a short introduction to each experiment, we elaborate
on how each stage of the framework was used to explain the
resulting visualization. This structured approach, similar to
the visualization pipeline, helped us elucidate the presented
visualizations.

We implemented this framework using OpenWalnut [12],
which is an open-source project. The non-optimized imple-
mented methods were published in the project as modules.
Visualizations were created using ParaView [4]. The experi-
mentswere executedon a systemwith an IntelCore i7 6700K,
50 GByte RAM, and an NVIDIA GeForce GTX 1080.

5.1 Synthetic: tangle function

The purpose of this experiment is to provide the reader a
first intuition on how various properties of the comparison
of random variables influence the visualization. Assuming
Gaussian distributions, two random variables can differ in
their mean and/or variance. We prepared four data sets that
differ in the ways a Gaussian distribution can differ (see
Fig. 4): b) only the mean differs, c) only the variance dif-
fers, d) both mean and variance differ, and a) no difference at
all.We used the first quadrant of the two-dimensional slice of
the tangle function [25] as our area of interest. We modeled
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Table 1 A tabulation of
upsampling techniques and their
applicability for upsampling
scalar fields with uncertainty
represented by Gaussian
distributions, GMM, and
nonparametric PDFs

Gaussian PDF interpolation [40] �
Kriging [49] �
GMM PDF interpolation [17] � �
Quantile PDF interpolation [17] � � �
Box-spline interpolation [47] � � �
Ensemble PDF interpolation [49] � � �

Gaussian distribution GMM nonparametric PDF

Fig. 4 Comparison of variants of the first quadrant of the tangle func-
tion. In the images a–d, the variants a do not differ, b differs only
regarding the mean values, c differs only regarding the variance, and d
differs regarding the mean and the variance. The contour lines represent

the difference W2 while the shades of gray represent the superlevel set
(≥ 45%) of the LCP of both original data sets. Visualizing the LCP
provides context for the visualization of the difference

different scenarios inwhich aGaussian distributionmay vary
using this area of interest.

Following the framework, we use an upsampling factor
of 2 for the Gaussian PDF interpolation [40], which fulfills
criteria (i)–(iii) of Holister et al. [17], but does not satisfy
criterion (iv) of Schlegel et al. [49]. It is not necessary to fulfill
the last criterion of Schlegel et al., because the tangle function
is a smooth function, which we sampled sufficiently high to
assume a linear change between the grid points. We aim for
a visualization that provides insights exclusively when there
are differences between random variables at a grid point,
thereby adhering to the condition outlined in identity (d1).
In addition, the distance should be symmetric (d3) so that
the reader can identify areas of equal dissimilarity. Finally,
we present the four cases in separate visualizations; thus,
we require the triangle inequality (d4) to hold in order to
be able to compare the four cases. The Wasserstein metric
W2 satisfies all the properties (d1–d4) required for a metric,
making it suitable for this particular task.

Figure4 shows the difference between the four cases
as color-encoded contour lines, while the superlevel set
(≥ 45%) of the LCP[40] includes both original data sets
to add a context. As this visualization already contains a lot
of information, both LCP have the same gray color, as only
their intersection is of major interest. For the case of no dif-
ference, Fig. 4a visualizes zero distance and fully overlapped

LCPs. In the second case in Fig. 4b, the mean values differ;
thus, the LCP does not overlap. Because we know that only
the mean values differ, the Wasserstein distance W2 is equal
to the absolute difference between the mean values. In Fig.
4c, only the variance differs, which is equal to the absolute
difference in the standard deviation. The LCPs of both orig-
inal data sets have maxima at the same locations; however,
owing to different variances, the possible location of oneLCP
is wider. Both the mean and variance differ in Fig. 4d which
results in the highest distance in the center of the visualiza-
tion. Here, it is not possible to identify the influence of the
mean or variance on distance. However, we can identify that
the distance is higher than in the other cases, which serves
as an entry point for further investigation. The LCPs now
overlap similar to the third case in Fig. 4c; however, based
on different mean/variance, their maximal estimated location
and width differ.

The presented visualizations allow us to quickly identify
dissimilarities between the data sets and provide an overview
for further investigations. To give an example considering
only Fig. 4d, the reader can quickly identify the localmaxima
in the center of the visualization (1.7, 1.0) which decreases
toward the bottom and left of the visualization. In addi-
tion, the differences increase toward the bottom-left corner
(0, 2.5) and upper/right of the visualization.
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5.2 Climate simulation: DEMETER

In this experiment, we want to exemplify how a researcher
for climate simulations can use the proposed framework to
compare two simulation models based on their forecasts. For
example, the DEMETER project [37] used seven climate
models, each producing nine different forecasts. Ensembles
of climate simulations can be interpreted as samples of one
scalar field with uncertainty. First, we use two models that
forecast the temperature for the February 20th in the year
2000 and want to know for which regions the forecasts of
both models differ.

The ensemble is sampled only by 20 points both in lon-
gitude and latitude and 3 for the height; thus, we cannot
assume a linear change in temperature; in other words,
we are unsure about the temperatures between grid points.
The upsampling method kriging [49] allows us to model
this uncertainty between the grid points, which satisfies all
upsampling criteria (i)–(iv). We used an upsampling fac-
tor of four to effectively consider the increased uncertainty
between the grid points. TheKullback–Leibler [9] divergence
DK L(Xi , Yi ) is awell-knowndistance function in the context
of machine learning, which we want to use here. Given two
models X,Y of the DEMETER project, represented as two
scalar fields with uncertainty using Gaussian distributions,
we compute the point-wise distance DK L(Xi , Yi ), Xi ∈
X, Yi ∈ Y. This distance function is a divergence that sat-
isfies only the identity (d1) and positivity (d2) of the metric
properties. Therefore, even if the areas exhibit similar values
in the resulting visualization, this does not imply that they
have similar differences. However, for this task it is not nec-
essary to satisfy the triangle inequality (d4) because we do
notwant to compare the differences of the points ormore than
two models. Finally, we visualized the differences between
the forecasts of both models using direct volume rendering.

Figure5 shows the direct volume rendering of the
Kullback–Leibler divergence. To compensate for the decon-
textualization, we included the intersection of the superlevel
sets (≥ 45%) of the LCPs of both original data sets. Note
that the absence of the intersection of the LCPs indicates a
difference between the two forecasts. This absence mostly
occurs close to the equator and can be identified directly by
the Kullback–Leibler divergence. Note that the intersection
surface is not smooth owing to the increased LCP between
the grid points, which has an increased uncertainty due to
the upsampling method. This visualization provides a good
entry point for further investigation of the region of interest.

5.3 Medical data set

In this experiment, we want to identify areas of interest for a
further analysis of the functional connectivity of schizophre-
nia. This OpenNeuro Dataset ds000115 [44] consists of

Fig. 5 Volume rendering of the Kullback–Leibler divergence between
the forecasts of two models. In addition, the shown iso-surface is the
intersection of the superlevel sets (≥ 45%) of the LCP at −63.15◦C of
both original data sets

measurements of BOLD time series of 99 individuals with
schizophrenia, their unaffected siblings, a healthy control
group, and their siblings. During the scan, the subjects per-
formed a task to increase their workingmemory load. Repovs
et al. [45] analyzed the difference in the working memory
loads of the brain connectivity of several areas. In our exper-
iment, we want to compare the entire measured data of one
subject to one or more subjects. For this, we summarized
each normalized time series of a measurement as a scalar
field with uncertainty using a Gaussian distribution and then
registered the mean scalar fields to a common base. Thus,
the mean can be interpreted as the resting state, while the
variance increases with a higher working memory load.

The resolution of this data set after we converted it into
a scalar field with uncertainty is 64 × 64 × 26 which we
want to increase by an upsampling factor of 2. We assume
this data set is sampled highly enough to use the Gaussian
PDF interpolation. Symmetry (d3) and identity (d1) are the
properties we need for the distance function to identify the
locations of interest. In addition, it would be handy to be able
to compare several subjects to one base subject to judge how
the comparisons differ. Thus, the desired distance function
should satisfy the triangle inequality (d4). For this, we can
employ the point-wise Wasserstein distance W2, which is a
metric satisfying (d1)-(d4).

Figure6 shows, similar to our synthetic data set, the inter-
section of the superlevel set (≥ 45%) of the LCPs of both
data sets as a context to present the Wasserstein distance as
a volume rendering. Please note, to avoid visual clutter, the
visualization includes only one half of the brain. This helps
to identify that the presence of a high difference coincides
with the absence of the intersected LCPs. In this visualiza-
tion, the areas of interest can be identified by the presence
of a difference, which can be quickly identified through the
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Fig. 6 Volume rendering of the comparison (Wasserstein distance)
of summarized BOLD signals of two subjects with and without
schizophrenia. As context, an iso-surface (intersection of LCP super-
level set for 45%) of both subjects is rendered

visualization. High values indicate that both subjects had a
different cognitive load in those areas and further investi-
gations inspecting the functional connectivity of those areas
could be made.

A follow-up question is which participants differ the
most/least to further inspect a reason behind those differ-
ences. This task involves the comparison of several uncertain
scalar fields with uncertainty. Opting for theWasserstein dis-
tance W2 proves advantageous as it adheres to the triangle
inequality (d4), enabling us to make estimations between
comparisons. While this experiment did not result in a volu-
metric visualization, like the previous one. It is an example
of how this framework can be used to make or think about
more abstract comparisons of scalar fields with uncertainty.

In the previous experiment, we computed the point-wise
distance using the Wasserstein metric W2. Now, we consider
the whole three-dimensional image as a multivariate distri-
bution without covariance. At this point, we do not want to
upsample individuals (upsampling factor L = 1), so we do
not apply any upsampling method. Similar to the visualiza-
tion pipeline, this is still valid in our proposed framework.
For the distance stage, we use the Wasserstein metric W2

for multivariate distributions, which results in a single scalar
value of how much both images differ. This allows us to cre-
ate a distance matrix between individuals. We then visualize
this distance matrix as a heat map to identify which subjects
differ the most/least.

Figure7 shows the normalized distance matrix between
each subject pair in a heat map. We grouped the individu-
als based on their condition: individuals with schizophrenia

Fig. 7 Heat map of the normalized distance matrix of all subject pairs
utilizing the Wasserstein distance W2. The comparison of individuals
with and without schizophrenia is highlighted with a blue rectangle.
The turquoise rectangle highlights individuals without schizophrenia to
also have a high difference to all other individuals

(SCZ), their unaffected siblings (SCZ-SIB), a healthy con-
trol group (CON), and their siblings (CON-SIB). Within the
groups, the individuals are sorted by age. This visualization
allows the reader to quickly get an overview of the whole
data set.We observe that the comparison between individuals
with and without schizophrenia, indicated by a blue rect-
angle, encompasses subjects exhibiting both high and low
dissimilarity. However, we can find a pair of individuals hav-
ing a very high dissimilarity in their brain activity which
could be investigated further. In addition, we can identify that
some siblings of individuals with schizophrenia, marked in
the turquoise rectangle, have a high dissimilarity to all other
individuals. From this point of view, additional methods, e.
g., clustering methods, can be applied to further investigate
this data set. However, this is not the scope of this article.

5.4 Probabilistic distance

This experiment introduces a new type of comparative visual-
ization that employs probabilistic distance functions to create
a scalar fieldwith uncertainty, encoding howmuch two scalar
fields with uncertainty differ. For this purpose, we used the
twomodelsX,Y from theDEMETERdata set of the previous
experiment. Please note, we are interested in the difference
(a distribution) and not the distance (a scalar).

Wewant to focus solely on the probabilistic distance func-
tion; thus, we do not apply an upsampling method. A novel
article by Grigorenko et al. [14] describes two methods to
create probabilisticmetrics based on statistical distance func-
tions. We use the probabilistic metric standard GV-fuzzy
metric Fpq(x) with the total variation distance δ(p, q) as
described by Grigorenko et al.:

Fpq(x) = x

x + δ(p, q)
(1)
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Fig. 8 Direct volume rendering of the LCP showing the most occurring
differences (LC P60(F)). Please note the difference F is represented
as a scalar field with uncertainty which can only be visualized using
uncertainty visualization methods. The white surface is the intersection
of the superlevel set (≥ 45%) of the LCPs of both original data sets at
a temperature of −63.15◦C

δ(p, q) = 1

2

∑

t

|p(t) − q(t)|, (2)

while p, q are the PDFs for each pair of points Xi ∈
X, Yi ∈ Y. This probabilistic metric fulfills all properties
of a metric (D1)-(D4). In order to visualize these differences
F = {Fpq(x),∀p ∈ X,∀q ∈ Y} represented as distribu-
tions, we need to use an uncertainty visualization method.
We opt for the use of the LCP [41] to have an initial view
of this scalar field with uncertainty. Please note the random
variables Fi ∈ F at the grid points i are no Gaussian distribu-
tions and their values are strictly positive because the distance
function satisfies the positivity (D2). We will further denote
LC Px (F) for the LCP at the value x of the difference F. This
uncertainty visualization method may not be the best choice,
but identifying a well-suiting method is beyond the scope of
this article and is kept for future work.

Figure8 shows the direct volume rendering of the LCP
adjusted to show the most occurring differences for the value
of 60, denoted as LC P60(F). In other words, the visualiza-
tion shows the feature probability of a specific difference F
between both models. In addition, the visualization includes
the intersection of the superlevel set (≥ 45%) of the LCPs
for the temperature −63.15◦C . The result supports the find-
ings of the previous experiment using the statistical distance
function. The areas where both models produce different
results are close to the equator. This visualization contains
more information about the difference than the previous
experiment using a statistical distance function (see Fig. 5).
However, this visualization only shows one feature probabil-
ity LC P60(F) of thewhole difference. Thus, the probabilistic
distance F contains more information than the aforemen-

tioned experiment. For the interested reader, we include
additional visualizations of other values, e. g. LC P5(F), in
appendix B.

6 Best practice guide

In this section, we present a more general approach to creat-
ing visualizations using the proposed framework. Choosing
the correct method for the upsampling stage initially depends
on how the uncertainty in the present data sets is modeled. In
most cases, owing to the central limit theorem, scalar fields
with uncertainty are modeled to contain Gaussian distribu-
tions at their vertices. Based on Table 1, all listed methods
support the interpolation of Gaussian distributions. Now, one
open question remains: "Which upsampling criterion men-
tioned in Sect. 3.2 should be fulfilled?" While the answer
to this question follows the target application, a straightfor-
ward approach is to choose Gaussian PDF interpolation [40].
This method assumes that a scalar field with uncertainty is
sampled sufficiently enough to ensure only linear changes in
the interpolated values. Owing to its linearity, artifacts in the
resultant visualization areminimized and an upsampling fac-
tor of L = 2 is sufficient to avoid misleading visualizations,
as shown in Fig. 2.

To identify a suitable upsampling method, we now sum-
marize what each criterion implies and how the resultant
visualization is affected by it:

(i) No additional modes: Additional modes between two
distributions with only one mode are desirable in the
context of volume rendering materials where one point
might encode the occurrence ofmultiplematerials, such
as the boundary between two different types on either
side [17]. This property is undesirable for a distribu-
tion that should transition, such as the temperature at
two different locations. It has no side effects due to the
distance stage on the resultant visualization, in contrast
with criterion (ii).

(i i) Lower limit of the upsampled variance:This criterion, if
not fulfilled, allows the uncertainty between two points
to be smaller than that at the points. This is not only
counter-intuitive but also affects the resultant visual-
ization through the distance stage. A reduced variance
results in a reduced or increased difference, and thus,
can result in visual artifact.

(i i i) Upsampled values have to be PDFs:While this criterion
is desirable for further work with PDFs, most of the
distance functions are defined to operate on CDFs that
can be converted from and to PDFs. However, Hollister
et al. [17] mentioned this criterion to ensure that this
type of conversion is valid. This criterion has no side
effects on the resultant visualization.
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(iv) Increased variance for upsampled points: This crite-
rion makes the model of the upsampled points more
uncertain. While the motivation behind this approach is
sound, an increased uncertainty between points, similar
to criterion (ii), can result in visual artifacts due to the
reduced/increased difference.

Choosing an appropriate distance function starts when
deciding whether the user is interested in the distance or dif-
ference. Regardless of the decision, it is advisable to choose
a distance function that satisfies all the metric axioms (see
Sect. 3.3). Thus, the interpretation of the resultant visualiza-
tion has no constraints and can be intuitively performed.
However, an interpretation of the difference using feature-
based visualization methods such as the LCP demands
increased cognitive loads. Thus, based on the current lim-
itations of visualizing the difference in scalar fields with
uncertainty, we advise the use of statistical distance func-
tions to create intuitive visualizations. A simple and intuitive
statistical distance function that satisfies all metric axioms is
the Wasserstein (Earth Mover’s) distance [22].

The following list summarizes how each metric axiom
(see Sect. 3.3) affects the resultant visualization:

(d1/D1) Identity:This property ensures that the visualization
can encode if two points are equal. Failure to satisfy
this axiom does not allow the identification of equal
points.

(d2/D2) Positivity: This axiom ensures that all the differ-
ences can be interpreted as a measure of distance
without a sense of direction, similar to the absolute
difference defined for scalar values.

(d3/D3) Symmetry: The symmetry axiom ensures that two
points have the same value as other two other points,
but are switched in their positions. Creating visual-
izations while not satisfying this axiom one is not
able to tell if two locations have similar differences.
However, if the relationship of interest is not the dif-
ference, for example, the relative entropy, fulfilling
this axiom is not necessary.

(d4/D4) Triangle inequality: The triangle inequality ensures
that the resultant visualizations can be compared. If
one is only interested in the difference between two
data sets while using a single visualization, fulfilling
this axiom is not critical. However, by comparing
two comparative visualizations to reason about the
encoded differences, this axiom must be satisfied.

Choosing appropriate visualization methods comes along
with a minimization of cluttering as this framework suggests
avoiding the decontextualization of the explicit encoding
paradigm by using additional information from the origi-
nal data sets. Thus, the visualization of the difference should

focus on the information of interest, e. g., only high differ-
ences. This approach ensures free space in the visualization
scene for additional context information, which we advise to
fill with the intersection of feature probabilities of the orig-
inal data sets. The process of adjusting both the calculated
differences and the context should be performed in an itera-
tive manner to minimize occlusion. A good starting point is
to create an initial visualization of the difference and identify
a feature probability that supports the initial visualization of
the difference. Feature probabilities, which support the pre-
sented difference, are equal or similar at locations with a
low difference but vary at locations where the difference is
high. This can be effectively visualized by the intersection of
two feature probabilities that leave room in the visualization
scene only if both features differ. For example, Fig. 5 shows
that most of the high differences are close to the equator and
the intersection of the superlevel set of the LCP for tempera-
ture −63.15◦C does not overlap with the volume rendering.
The next iterations alter between focusing on the presented
difference, e. g., filtering out more differences, and further
minimizing occlusions by adjusting the feature probabilities.
The resulting visualization contains the desired information
about the difference and context while minimizing occlu-
sions.

7 Discussion and limitations

This theoretical framework presents itself as a blueprint for
comparative visualizations in the explicit encoding of scalar
fields with uncertainty. This facilitates a rapid identifica-
tion of areas of interest, serving as an initial overview for
subsequent exploration. In the presented experiments, the
visualizations allow to quickly identify the differences of the
data sets while considering their uncertainty. However, this
can also be a limitation of its visualizations as they are subject
to the limitations of comparative visualizations in the explicit
encoding paradigm. LYi et al. [32] summarized these limi-
tations and how various authors overcame them. While this
article proposes a general approach to include a context in
form of feature probabilities of the original data sets, this
is only one way to overcome the issue of decontextualiza-
tion. Further research to improve the proposed framework
solving the summarized limitations of visualizations in the
explicit encoding paradigm [32] can yield to a more holistic
method to create comparative uncertainty visualizations in
the explicit encoding paradigm.

Typically, the majority of distance functions possess a
closed form applicable to Gaussian distributions, resulting in
computational complexity that remains constant. Conversely,
when dealingwith non-Gaussian distributions, these distance
functions rely on representations such as the PDF [9], directly
employing samples of an unknown distribution or the CDF.
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Thus, the time complexity of the distance calculation depends
on how many samples are taken or on the resolution of the
PDF/CDF.

The probabilistic distance functions are still an ongoing
research topic, especially for the visualization community.
Proper visualization methods need to be identified to cre-
ate intuitive visualizations for the difference of two scalar
fields with uncertainty. In our experiment, we used the LCP
to show them. However, further research has to be done to
capture all information of the difference through proper visu-
alization methods. Promising candidates are direct volume
rendering methods which are suited for non-Gaussian dis-
tributions. Please note characterizing the distance function
Fpq(x) by a mean or variance is not precise due to it not
being symmetric like the Gaussian distribution. Thus, the
work of Djurcilov et al. [11] cannot be applied without fur-
ther adjustments. The same holds for other volume rendering
techniques, e. g. [3, 39, 47], which requires further research.

However, in order to create interactive visualizations of the
differences, further research has to be done in the modeling
of the distribution function Fpq(x), because processing a
whole distribution is not feasible for huge data sets. In our
experiment, we computed the distribution function Fpq(x)

for each point with respect to a desired iso-value for the LCP.
However, further research on how to model the distribution
function in a more efficient can improve the computation
speed allowing real-time interactive visualizations.

For clarity and simplicity in introducing the proposed
framework, we chose to exclude the consideration of covari-
ance. This framework supports covariance through the uti-
lization of upsampling methods, distance functions, and
visualization techniques that take into account the covari-
ance. However, to our knowledge the literature does not
offer any upsampling criteria considering the covariance,
which can be a future research direction to identify inter-
polation methods and criteria to consider the covariance.
The categorization of distance functions is not contingent on
the incorporation of covariance and is therefore universally
applicable.

8 Conclusion

This study introduces a theoretical framework designed for
the comparison of observations, such as the identification
of similarities, differences, or patterns-a challenge routinely
encountered by scientists working with uncertain data. The
presented techniques empower these scientists to generate
comprehensive comparative visualizations for scalar fields
with uncertainty in a dense visualization employing the
explicit encoding paradigm, thus allowing to quickly identify
areas of interest of dis-/similarities. The framework accom-
plishes this by employing one or more interpolation stages,

incorporating statistical distance functions, and leveraging an
appropriate visualization method. Thus, this framework is a
good way to discuss comparative uncertainty visualization
using the explicit encoding paradigm.

This article defined how methods of different stages can
be classified and how those properties influence the com-
parative visualization. Especially important are the metric
properties of the distance functions which mainly influence
the resulting visualization and its interpretation. In the pre-
sented experiments, we elucidated how to choose methods
based on the presented classifications.

The mentioned instances of the framework leave interest-
ing challenges for further investigations for the visualization
of uncertain data. Distance functions, which return distri-
butions, create the need for proper visualization methods
to present intuitive visualizations. While visualization tech-
niques to visualize individual scalar fields with uncertainty
are present, an in-depth analysis for an intuitive way of pre-
senting uncertain similarities or dissimilarities still needs to
be done.

A Interpolation

Togive the reader an overviewabout howeachupsampling
criterion influences the resulting interpolants, Figs. 9, 10, 11
show visualizations of three different interpolation methods.
Table 2 shows which interpolation method satisfies which of
the following interpolation criteria:

(i) No additional modes.

Fig. 9 Given two normal distributions at the observed positions s1, s2,
the Gaussian PDF interpolation fG(s, v) can be computed by interpo-
lating the moments of the normal distributions f1, f2
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Fig. 10 Given two normal distributions at the observed positions
s1, s2, ensemble PDF interpolation draws samples from the distribu-
tions X1, X2. These samples are interpolated between the pairs and
the interpolant PDFs are calculated. Here, a Gaussian distribution is
assumed as interpolant PDFs fE (s, v)

Fig. 11 Given two normal distributions at the observed positions s1, s2,
kriging approximates the random variables X1, X2 at the grid points
using a Gaussian process regression of the multivariate Gaussian dis-
tribution fK (s, v) ∼ N (μ(s), σ 2(s))

Table 2 Overview of the exemplary upsampling methods and if the
upsampling method satisfies which of the upsampling criteria

(i) (ii) (iii) (iv)

Gaussian PDF interpolation � � �
Ensemble PDF interpolation � �
Kriging � � � �

(ii) The minimal variance of the interpolants is not smaller
than the lowest variance of the interpolated distribu-
tions.

(iii) The interpolants are PDFs.
(iv) The variance of the interpolants should increase propor-

tional with the distance to a grid point.

B Probabilistic distance function
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Fig. 12 Direct volume rendering of several LCPs of the probabilistic
distance function F. The values x for the LCP of the difference F are
a 0, b 5, c 10, d 15, e 20, and f 30. In a, the probability LC P0(F) for
low differences (x = 0) is only visible with a low probability (LCP)

which indicates that the two data sets do not have small differences.
This changes rapidly for a higher value x ≥ 5 b–f, while the higher
differences LC Px≥0(F) mostly occur close to the equator
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