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ABSTRACT In this work, we provide an overview of the XAI (Explainable Artificial Intelligence) works
related to explaining the methods working on point cloud (PC) data. The recent decade has seen a surge
in artificial intelligence (AI) and machine learning (ML) algorithms finding applications in various fields
dealingwith awide variety of data types such as image and text data. Point cloud data is one of these datatypes
that has seen an upward trend in the use ofAI/ML algorithms. However, not all theseAI algorithms are ‘‘white
box’’ models that can be understood by humans easily. Many of them are hard to interpret or understand
and thus, require methods to provide explanations for the decision-making process. These methods that
attempt to provide explanations or insights into the working of AI models working on various datatypes
are grouped under XAI. Even though the use of datatypes such as point clouds for AI models has seen an
upward trajectory, we see a lack of survey works documenting the developments in the corresponding XAI
field. This issue is addressed through our contribution. We classify the literature based on different criteria
such as XAI mechanism used, AI models, their tasks, type of model learning and the type of point cloud
data taken into consideration. This can help readers identify works that address specific tasks and obtain
corresponding details easily. We also provide useful insights regarding the surveyed papers that highlight
interesting aspects of the surveyed literature.

INDEX TERMS Artificial intelligence, explainable AI, point cloud data.

I. INTRODUCTION
In recent years, the technological advancement has made
3D data acquisition more accessible by making equipment
such as sensors and cameras used for such data acquisition
more affordable. This has led to an increase in the use of
3D data in various fields of application such as autonomous
driving [16], healthcare [31], cultural heritage [57], and
virtual reality [70]. Point clouds are one of the 3D datatypes
represented by a discrete set of data points in 3D with each
point represented by its spatial coordinates (x, y, z). They
are finding widespread use in many applications due to their
ability to capture structural information in 3D.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wang .

Apart from finding use in an increasing number of
domains, point clouds recently have been increasingly
processed and analyzed using machine learning (ML) which
has also seen an exponential growth in the last decade.
ML networks have the ability to capture complex features
and perform tasks on various datatypes such as images,
texts and time series with high accuracy. These properties
of ML networks have led to the possibility of utilizing
them for a variety of tasks in many areas of application.
A major part of the ML research is related to ML networks
working on image data. The amount of research work in the
field of point-cloud-based ML is significantly less compared
to image and text-based research work. This is probably
attributed to the unstructured nature of the point cloud data
which makes learning features extremely difficult compared
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to structured data such as images. Another factor impacting
the development of point-cloud-based learning algorithms is
the scarcity of data as many ML algorithms are known to
be ‘‘data hungry’’. Many efforts have been made in the last
decade to address this [10], [76]. A brief overlook of point
cloud datasets is provided by Camuffo et al. in [7].
Availability of large-scale point cloud datasets such

as ModelNet [76] and ShapeNet [10] has enhanced the
developmental works in ML intended for point cloud data
[17]. With this increase in the number of learning algorithms
working on point clouds, the need for understanding these
algorithms has also become more important. This is mainly
due to the risks involved in the processes that employ AI
algorithms. For example, in autonomous driving applications
or in applications in the healthcare field, minute errors by
the AI algorithms could lead to the loss of or pose major
danger to human life. Thus, it becomes extremely important
to understand these AI algorithms before deploying them in
real-world scenarios. This is addressed by XAI. XAI is a
subfield of AI, and especially of ML, that corresponds to the
development of methods attempting to provide explanations
of AI and ML model’s working. It is an important field of
research given the exponential rise in AI and ML and its
penetration into the application areas involving risks, as those
mentioned above. Figure. 1 shows an overview of the XAI
pipeline in point-cloud-based AI. The XAImethods make use
of one or a combination of the three components (input point
cloud data, AI model and prediction) to provide users with
useful insights into the working of AI models.

FIGURE 1. Illustration of XAI in point-cloud-based AI. Gray arrows
indicate the general AI/ML process and the orange arrows indicate XAI
process.

Even though there are some prominent point-cloud-based
XAI works that attempt to explain or improve the trans-
parency of ML models such as [80] and [82], the research
area shows the absence of survey works documenting the
latest developments in the field. Survey papers provide
important information regarding the significant works and the
latest developments in the corresponding field of research.
In addition, they also highlight the pattern in the research
literature collected and identify the gaps that need to be
addressed by the researchers in the future [74]. Thus, they
play an important role in every field of research. Even though
theXAI field has surveyworks that cater to specific sub-fields

such as cybersecurity related XAI [11], time series data-based
XAI [48], and healthcare related XAI [9], [68], we observe
the absence of such works in the point cloud-based XAI field.
Therefore, we attempt to provide an overview of the XAI
work in point-cloud-based AI models. This will allow the
researchers working on point cloud data processing to easily
find brief but important details about the past works and the
current state of the art developments in the field and thus,
help them in developing new methodologies or extending
the current work. We review 45 papers that were selected
from 81 papers collected at the beginning of the survey. The
contributions of our paper are:

1) Detailed overview of XAI for point cloud data.
2) Classification of the literature based on various criteria

to provide better insights.
3) Explanation of the basic XAI mechanisms employed or

adapted by the surveyed papers.
4) Provide interesting insights from the surveyed litera-

ture that help readers understand the XAI work for
point cloud data better.

The above mentioned contributions intend to help readers
coming from various fields such as medical professionals
looking for reliable AI applications for certain tasks in their
domain. For example, they can be useful for ML developers
trying to look for XAI methods that provide explanations for
a specific type of point cloud data or ML model that relates
to their work or for the readers from the visualization domain
investigating the use of visualization tools in XAI for point
cloud data.

A. ORGANIZATION OF THIS PAPER
The rest of the paper is organized into following sections:
Section II provides an overview of the surveyed literature
in the field of XAI in general and indicates the need for
our survey paper. Section III provides a brief information
about the methodology used for collecting and shortlisting
of the literature. Section IV explains the classification of the
collected literature based on the type of XAI explanation
and the properties of the corresponding AI model and
data used. Section V provides a detailed information about
the XAI methods proposed in the selected literature and
section VI provides interesting insights into the surveyed
literature. Section VII contains the final remarks regarding
our contribution.

II. RELATED WORK
With the rapid increase in the use of AI algorithms to perform
diverse tasks, the need to understand these algorithms has also
gained importance in recent years. This area is addressed by
XAI methodologies providing insights into the working of
these AI algorithms. These insights also lead to the increase
in the trust value of these AI models among the end-users.
Many XAI methods have been developed in the last decade
that attempt to provide an explanation of the AI model’s
working. These are documented in many XAI surveys
published in recent years. Adadi and Berrada [1] thoroughly
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reviewed explainability methods in AI. They explained in
details the basic need for XAI and the classification of the
literature based on (a) the complexity of ML model, (b) the
scope of interpretability, and (c) the level of dependency
on the ML model taken into consideration. Minh et al.
[39] provided a detailed survey of XAI literature explaining
the background of XAI and reviewing the XAI literature
included in the survey. Similarly, Linardatos et al. [30]
surveyed ML interpretability methods and provided sources
of the programming implementations of these methods. The
classification of the XAI literature in this work was based on
four criteria: (a) Scope of the interpretability, (b) the level of
model dependency, (c) purposes of interpretability, and (d)
data types.

However, it is extremely difficult to provide a survey
encompassing all the research work done in the field of
XAI. This is mainly due to the diverse nature of AI models,
input data, and model tasks. Thus, many surveys focus on
providing an insight into the recent developments in specific
sub-regions of the XAI field.

For example, Burkart and Huber [6] provided a survey of
XAI methods intended for supervised ML which is a type
of learning used in ML to train a model. They focused on
XAI works corresponding to the classification and regression
models of supervised learning domain. However, they do not
take into consideration the type of input data being used for
theseMLmodels. Danilevsky et al. [12] focused on providing
an overview of the XAI work in the field of natural language
processing (NLP). The authors classified the literature into
local vs global explanations, self-explaining NLP models
vs post-hoc methods and provided detailed explanations
for the same. Charmet et al. [11] provided an extensive
literature review of the XAI methods intended for the
cybersecurity field. Their classification of literature involved
the exploration of both methods for explaining AI algorithms
used for cybersecurity applications and the security analysis
of XAI methods. Tjoa and Guan [68] surveyed the XAI
literature in the medical field. They presented two major
categories (perceptive interpretability and interpretability by
mathematical structure) for the XAI literature which are
further divided into subgroups based on the XAI mechanism
used. Chaddad et al. [9] provided a detailed survey of XAI
developments in the healthcare field. Here, the surveyed
papers are categorized into four major groups based on
the forms of explanations, types of interpretability, model
dependency and scope of the explanations. The authors also
take into consideration the modalities of the data acquisition
when exploring the XAI methods. Similarly, Wells and
Bednarz [75] surveyed XAI literature that attempt to explain
reinforcement learning (RL) models. They classified the XAI
literature for RL based on four main topics: subject domain
the papers focused on, publication types such as conference
or journals, year of publication, and the primary purpose of
the XAI papers. Di Martino et al. [13] focused on surveying
tabular and time series data-based XAI literature in the field
of clinical and remote health applications. The collected

papers are grouped into three main categories based on the
input data type, model development stage and explanation
assessments. These are further divided into subgroups to
help users identify research papers based on their properties.
Another XAI survey focusing on the explainability of AI
algorithms working on time series data was by Rojat et al.
[48]. The authors classified the literature into multiple groups
based on the properties of XAI methods such as the scope
of interpretability, ante-hoc vs post-hoc, model dependency,
target audience, and whether the papers include evaluation of
the explanations proposed.

However, to the best of our knowledge, there are no
survey articles that focus on point cloud related XAI works.
Therefore, through this survey, we attempt to close this gap
in the literature.

III. SURVEY METHODOLOGY
We collected literature based on the keyword search and
followed the references in the found literature by the
snowballing approach. In the the keyword search process,
we used the combination of keywords ‘‘XAI’’, ‘‘explain-
ability’’, ‘‘interpretability’’ and ‘‘saliency map’’ with the
keyword ‘‘point cloud’’ to obtain corresponding literature.
We considered the ACM Digital Library, IEEE Explore
and SpringerLink online databases along with the use of
Google Scholar web search engine to look for relevant
literature. We obtained 74 papers after this process. With
the obtained papers as start set we used the snowballing
approach to incrementally look for relevant references in
the collected literature and for papers which reference the
collected literature. This process resulted in a collection of
81 papers appearing to be relevant for the topic studies in this
survey.

To filter the actually relevant papers from the collected lit-
erature, we followed the four-phase flow diagram of PRISMA
(Preferred Reporting Items for Systematic reviews and
Meta-Analyses) guideline proposed by Liberati et al. [29].
In addition to the papers that focus primarily on addressing
the explainability part of the AI models, this filtering process
also included the selection of papers that do not directly try to
address the explainability issue but include concepts/methods
that can be used for understanding the working of these
AI models. We did not restrict our literature search to
a specific time period as we intended to cover all the
research work carried out in this specific field. This filtering
process resulted in 45 papers for our analysis. Figure 2
shows the distribution of the selected literature over the
years they were published. We observe an overall increasing
trend which is promising for the research field in focus
with 10 papers already published in the first five months
of 2024.

IV. CLASSIFICATION
XAI methods consist of various types of explanations that
attempt to explain AI models in different ways. In other
words, XAI methods do not follow a standard way of
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FIGURE 2. Number of articles published in point-cloud-based XAI over
years. In general, numbers are increasing. There is a dip around
2021 which might be attributed to COVID-19. A decrease of
non-COVID-related publications has been observed in some research
fields [33], [46].

analyzing a model. Therefore, it is important for surveys
to provide a classification of these methods based on their
features. The point-cloud-based XAI methods collected in
this work, in general, can be classified into multiple classes
and sub-classes based on various criteria (see Figure 3).
These criteria include the datatype being used as input,
properties of the AI model used, and the characteristics of the
XAI methods used. In this work, we classify these methods
as follows:

A. TYPES OF EXPLAINABILITY
In this section, we classify the XAI literature based on the
types of explainability (A⃝ in Figure 3) they use to explain
the working of the AI model. Here, we also include the
research works that attempt to make these models partially or
completely transparent (or intrinsic) and thus, addressing the
explainability aspect of these models (see Table 1). Further,
we identify which of these works include visualization as a
part of the model analysis.

1) TRANSPARENT MODELS
This group corresponds to the explainability derived from
the architecture of the AI models itself. In particular, the
architecture of the model contains layers that are easily
interpretable for humans. We further divide this group into
two subgroups based on the extent of transparency.
Intrinsic models:These are the AI models that are com-

pletely transparent. This means, the model’s architecture is
inherently interpretable. Some examples of intrinsic models
are decision trees, K-Nearest neighbors (k-NN) and linear
regression models.
Hybrid interpretable models: These are the black box

models that include some interpretable layers making them
partially transparent.

2) XAI MECHANISMS AND POINT OF APPLICATION
The XAI methods are used to analyze models at different
stages of of ML pipeline. In this work, the collected literature
can be classified into two classes based on the point of
application of XAI methods.

1) Training process analysis: Methods belonging to this
class are utilized to analyze the model during the
training process. These methods help humans in
understanding how the model learns to detect features
as the training process progresses.

2) Post-hoc: Post-hoc XAI methods refer to the group
of methods that are used to explain a model after
the completion of training process. These methods are
further divided into following sub-groups:
a) Gradient-based: These are the methods that uti-

lize the gradients to produce saliency attributions
to understand the decision-making process of the
AI model.

b) Perturbation-based: These methods introduce
perturbations to the input point cloud data and
compute the change in output value as the
saliency attributions corresponding to the input
variables altered.

c) Comparison of latent features: Here, the features
of input data instances are compared in the latent
space to understand how the model differentiates
input instances belonging to different classes.

d) Activation of intermediate layers: Explanations
that exclusively use the activations of the inter-
mediate layers to generate saliency maps are
categorized into this group.

e) Example-based explanation: One of the unique
methods of analyzing a model’s performance is
to compare multiple input data instances and
interpret the decision-making process of the
model. Such comparisons provide humans with
the possibility to observe distinct patterns in the
input data instances that relate to the output value.

When we try to use explainability methods to understand
the working of an AI or ML model, it is important to answer
some of the basic questions such as ‘‘Will the method provide
me an overall explanation about the model’s decision-making
or will it be specific to an individual input instance?’’, ‘‘How
easy is it to use the method to explain different AI models?’’
and ‘‘What tools does it require for explaining the model?’’.
The answers to these basic but very important questions are
provided by the properties of the explainability methods.
Therefore, we also classified the surveyed papers based on
these properties that help readers with these information.

3) SCOPE OF EXPLANATION
There are two types of explanations throughwhich themodels
are analyzed. The global explanation, on one hand, attempts
to explain the model by taking into consideration multiple
input instances and providing an overall interpretation of the
model behaviour. On the other hand, the local explanation
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FIGURE 3. Classification of XAI methods in point cloud (PC) data. A⃝: Based on the type of explainability B⃝: Based on the model and data used.

tries to explain the decision-making process of the model for
a particular input instance.

1) Global explanation
2) Local explanation

4) MODEL DEPENDENCY
Here, we take into consideration the dependency of the XAI
methods on the models being analyzed. Some of the works
attempt to explain particular models working on point cloud
data. These are termed as model-specific methods. Methods
that do not depend on the architecture of AI models being
analyzed and can be easily applied to other models are
grouped into model-agnostic class.

1) Model-specific
2) Model-agnostic

5) USE OF VISUALIZATION
Visualization is one of the important aspects of explainability
as it assists humans in understanding the model. Therefore,
we classify the literature into two groups based on whether
the methods involve the use of visualization for explaining
the model’s decision-making process.

1) Included
2) Not included
The classification of literature based on all the criteria

mentioned above in subsection IV-A is shown in Table 1.

The affiliation of the papers to specific group is highlighted
using a ‘•’ mark. The rows are colour-coded based on the
year of publication to help readers identify the initial XAI
works in the point cloud-based XAI field and also the latest
developments contributing to field. It is also visually helpful
for readers in following the classification of individual
literature across columns.

B. CLASSIFICATION OF XAI BASED ON MODEL AND DATA
Apart from the classification of XAI methods mentioned
above, we also look into the type of point cloud data these
methods work on and the type of models they target for
explaining ( B⃝ in Figure 3). The type of point cloud data
class refers to the different things that are represented by
point clouds. The type of models class takes two criteria into
consideration: 1) Type of training and 2) type of task these
models perform. Table 2 shows this classification mechanism
in the tabular form.

1) TYPE OF POINT CLOUD
The XAI literature can be classified based on the type of point
clouds used as input for the AI model. Different types of point
clouds encountered in our survey are as follows:

1) 3D models: These are the point clouds representing 3D
models/objects such as tables, planes, chairs etc.
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TABLE 1. Table containing collected literature and the characteristics of the XAI method used in these literature. The articles are ordered and color-coded
based on the year of publication (from 2017 (top) to until May, 2024 (bottom)). ‘‘T’’ indicates that the method was used for explaining training process.
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TABLE 2. Classification of the literature based on the properties of AI model and data used. The articles are ordered and color-coded based on the year
of publication (from 2017 (top) to until May, 2024 (bottom)).

2) LiDAR and RGB-D data: This data refers to the point
clouds of buildings, train lines or other specific regions
in the environment generated using LiDAR and/or
RGB-D sensors.

3) Particle trajectories: This data refers to the trajectories
of charged particles such as protons in the field of high
energy physics (HEP) represented in the form of point
clouds.
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FIGURE 4. Point cloud types (form left to right): 3D model, LiDAR (data courtesy Debra Laefer [69]), particle trajectories (courtesy Bergen pCT
Collaboration), medical data (hand CT data courtesy Tiani Medgraph). Visualized using OpenWalnut.

4) Medical/Biological data: These are the point cloud data
that represent biological or medical elements such as
brain or heart.

An example of the above mentioned point cloud types is
shown in Figure 4. We observe in Table 2 that a large portion
of the literature caters to the analysis of models working on
point clouds representing 3D objects.

2) TYPE OF MODEL
In this group, the XAI methods are classified based on the
type of training process used for training a model. We divide
the literature into following three classes based on the models
considered for analysis in these works.

1) Supervised learning (SL)
2) Unsupervised learning (UL)
3) Reinforcement learning (RL)

3) TYPE OF MODEL TASK
The AI models considered in the collected literature are
tailored for specific tasks. Here, we classify the literature
based on the tasks listed below.

1) Classification
2) Segmentation
3) Others (eg: Regression, Object detection, Reconstruc-

tion, Registration, Representation learning)
Similar to the representation of the literature classification

in tabular format in subsection IV-A,we represent the classifi-
cation of the same set of papers based on the properties of the
AI model and the input data in Table 2. We also maintained
the same colour-coding and affiliation highlighting methods
to help readers identify specific works of interest across
both the tables. These tabular representations help readers
in identifying patterns and detecting outliers in the surveyed
papers and thus, helping them in gaining a better overview of
the XAI works in the concerned research field.We also derive
interesting insights from these tabular representations which
are described later in section VI.

V. SPECIFIC IMPLEMENTATIONS OF XAI MECHANISMS
In this section, ordered by the type of explainability
(subsection IV-A), we discuss the specific implementations
of the explainability mechanisms as introduced by the papers
considered for review in this work. This section is the core of

the paper because each surveyed paper is discussed in detail
here.

A. TRANSPARENCY
Transparency as an explainability mechanism refers to the
literature that attempt to make an AI model partially or
completely transparent. This allows humans to partially or
fully understand the process of detecting features and making
a particular decision based on these detected features. In this
section, we include models that belong to the intrinsic models
and hybrid interpretable models mentioned in section IV.

Micheletti [38] proposed the idea of using group equiv-
ariant non-expansive operators (GENEOs) to develop trans-
parent ML models dedicated for various tasks. A GENEO
is a functional operator that performs data transformation.
The author proposed using SCENE-net [25] (see Figure 5)
for point cloud segmentation task. Here, the GENEOs that
are in the form of convolutional operators detect some of
the important geometrical features in the input data. The
input data is a LiDAR point cloud data that captures energy
transmission system with surrounding vegetation containing
bushes and trees. The geometrical features are captured using
three types of kernels in the GENEOs: 1) Cylindrical kernel
to detect vertical structures, 2) Cone-cylinder kernel (cylinder
with a cone on the top) to distinguish towers from trees, and
3) Spherical kernel to detect bushes and tree crowns. These
features are used by the network to segment the point cloud
data. Each GENEO unit Gvii in the first layer is associated
with a parameter λi as seen in Figure 5 that is learned during
the training and it indicates the importance of corresponding
GENEO unit. The output of these GENEOs in the first layer
and their corresponding parameters, λi, are used by another
GENEO unit H (referred to as the ‘‘observer’’ in Figure 5)
in the following layer that performs a convex combination
and the output is transformed (by M ) into the probability
of whether a point belongs to a tower or not. At the end,
a threshold operation is used to classify the data. Through
the use of the interpretable kernel types, this pipeline makes
the network simplified and therefore, more interpretable
compared to the regular neural networks.

Kyuroson et al. [24] proposed an unsupervised learning
network to perform point cloud segmentation for power
lines inspection in a smart grid. The point cloud is captured
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FIGURE 5. SCENE-net architecture. Image taken from [38].

by an unmanned aerial vehicle equipped with a LiDAR
sensor. The authors make use of clustering algorithms to
perform segmentation. In particular, the proposed method is
a two-stage unsupervised hierarchical clustering method that
is based on DBSCAN and Kd-tree to extract power lines
from the LiDAR point cloud data with spatial coordinates.
The initial stage involves extracting high-elevation points
from the point cloud data using statistical analysis applying
density criteria and histogram thresholding. The Kd-tree is
used to structure and spatially organize the data to remove
points from the set of high-elevation points that do not
represent power lines. Using PCA [43], power lines are
extracted from these high-elevation points. The following
stage involves the segmentation of these extracted power
lines using two-layered DBSCAN clustering to analyze the
both the directions (orthogonal and parallel planes) of the
power line span. This use of methods such as DBSCAN
and Kd-tree whose working principles are transparent
makes the network transparent compared to deep neural
networks.

Zhang et al. [80] proposed PointHop, an explainable ML
method for point cloud classification. The method consists of
two stages. The first one corresponds to building attributes in
a local-to-global fashion using iterative one-hop information
gathering. The second stage corresponds to classifying the
point cloud data based on the attributes generated. Figure 6
shows an overview of this method. Each point in the input
point cloud data is represented by its spatial coordinates. The
authors use these attributes corresponding to a point and its
neighbors within one-hop distance to compute new attributes.
These points in the neighborhood are determined using K
nearest neighborhood method taking the distance measured
by the Euclidean norm into consideration. As the number of
hops becomes larger (leading tomore points being considered
as neighbors), the number of attributes increase as well
covering a larger receptive field. To address the issue of large
number of attributes, Saab transform is used in each PointHop
unit as a dimensionality reduction technique. Subsequently,
these attributes are aggregated using multiple aggregation
schemes (M schemes in Figure 6) and used by a classifier
model such as Random Forest (RF) to classify the data.
This use of point-hop mechanism (top row in Figure 6) for
building attributes adds transparency to the PointHopmethod.
However, the entire method is not completely transparent due

to the use of classifiers such as RF which do not fall into the
transparent models group.

FIGURE 6. An overview of the PointHop method for point cloud
classification. N i and Di refer to the number of points and number of
attributes respectively. Image taken from [80].

Arnold et al. [2] proposed eXplainable Point Cloud
Classifier (XPCC) method which is a prototype-based
classifier. The network (see Figure 7) consists of a pre-trained
kernel point convolutional neural network (KP-CNN) that
is used to extract features from the input point cloud data
that are then compared with the features of prototypes
representing each class to determine which class the input
point cloud data belongs to. In the local similarity layer,
the extracted features of the input data are compared with
the corresponding features of the prototypes of each class
(each class has multiple prototypes). In the global similarity
layer, the similarity score for each class is extracted from the
most similar prototype in each class. In the following layer,
the classes’ similarity score is weighted by the input data’s
similarity to the respective classes’ compound prototype. The
compound prototype corresponding to a class consists of all
the prototypes belonging to that class superimposed. In the
last layer, a softmax function is applied and hard classification
is performed to determine the predicted class. This use of
prototypes and similarity criteria makes the model more
transparent but the use of KP-CNN for feature extraction
excludes it from being considered as a completely transparent
model.

FIGURE 7. XPCC architecture for point cloud classification. Image taken
from [2].

Tan [62] proposed Fractual Projection Forest, a pipeline
that utilizes fractal features to help ML models perform
point cloud classification tasks. The concept is similar to the
PointHop method [80] where features are generated from
the input data in an interpretable way and a classifier such
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as a RF model is used to classify the point clouds based
on these generated features. In this work, the features are
generated from the projections (1D and 2D projections) of
the input point cloud data. The point cloud is projected on
each of the x, y, z axes and xy, yz and xz planes. Relevant
features are generated from these projections using multiple
windows of varying size as shown in Figure 8. A Gaussian
distribution is fit onto each of these windows to obtain
corresponding Gaussian parameters. All these generated
features are concatenated and used as input for the classifier
model.We added this model to the hybrid interpretable model
group due to the use of the explainable feature generation
process and the use of RF classifier in that is opaque.

FIGURE 8. An overview of the Fractual Projection Forest architecture for
point cloud classification. Image taken from [62].

Feng et al. [15] proposed an interpretable classifier called
Interpretable3D for point clouds classification. It is based
on the prototype comparison mechanism where the label (or
class) of the input sample is determined by assigning the label
corresponding to the most similar prototype. The similarity is
computed using cosine similarity function. To represent each
class effectively, certain number of prototypes are selected
instead of using one prototype for each class. The classifier
consists of two parts where one part learns the underlying
representations of the samples and the other part predicts the
labels.

Transparency is the most preferred type of explainability.
However, it becomes more difficult to implement as the
model tasks get more complex and thus, leading to complex
model architecture. In our survey, only six surveyed papers
attempted to provide explainability through a transparency
mechanism. Three of these papers proposed hybrid inter-
pretable models that contain only certain layers in the
architecture that are transparent. The remaining three papers
proposed intrinsic models made up of transparent layers.

B. GRADIENT-BASED METHODS
Gradient-based explainability methods rely on the com-
putation of gradients through backpropagation to generate
explanations for neural networks. Backpropagation is a
method to estimate gradients by propagating errors backward
in neural networks. These gradients are used to update
network parameters (weights) during the training process.
Some of the major works in this area are SmoothGrad
[56], Integrated gradients [60], and Grad-CAM [51] which
were mainly developed for ML models working on image
data. However, many researchers have attempted to adapt

these methods to explain ML models working on point
cloud data. One of the earliest works in this direction was
by Gupta et al. [18]. They adapted two of the most widely
used gradient-based XAI methods (Guided backpropagation
[58] and integrated gradients [60]) to point cloud data and
visualized the results along with vanilla gradients as shown in
Figure 9. The points coloured red indicate their high influence
on the output value.

FIGURE 9. Saliency maps for Pointnet++ model working on point clouds
representing an airplane. The saliency attributions are represented by a
red (large) to blue (small) heatmap. Image taken from [18].

Mulawade et al. [42] adapted two gradient-based methods
to point cloud data representing particle trajectories. The
authors adapt SmoothGrad [56] and integrated gradients to
a deep RL model tracking charged particles using point
cloud data as input. The model is a multi-input multi-output
model and the initial visual analysis of the model’s working
included the adaptation of the above-mentioned gradient-
based methods to a subset of the input data. They extend
this work to include all the input features for analyzing
the deepRL model in [41]. Here, they analyzed both the
adaptations to determine the method that provides better
insights, extended its adaptation to the remaining features in
the input data and designed a visual analytics (VA) system for
the thorough analysis of themodel’s decisionmaking process.
To address the issue of visualization of high-dimensional
saliency attributions, they made use of dimensionality
reduction technique t-SNE [71]. The visual analytics system
consists of multiple parts (or tabs) containing interactive tools
that address specific requirements. Figure 10 shows one of
these tabs from the VA system consisting of visualization of
embedded saliency attributions (left), 3D visualization of the
corresponding point cloud data (center) and its 2D projection
(right) with all the three plots linked to each other for better
exploration of the data.

In addition to the above mentioned papers, Schwegler et al.
[50] also extended the integrated gradients method to the
ML models working on semantic segmentation of point
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FIGURE 10. Visual analytics system for understanding a deepRL-based particle tracking network. Image taken from [41].

cloud data. They generated a baseline with high entropy
and interpolated it with the input point cloud data that
consists of coordinates and RGB values of each point. These
interpolated point cloud data instances are used as input and
their corresponding gradients are computed for all the classes
in the segmentation to generate saliency attributions. These
attributions are then projected back onto the actual input point
cloud data to indicate the importance of each input feature on
the output.

Dworak et al. [14] adapted the Grad-CAM method to
object detection architectures working on LiDAR point cloud
data in automotive perception systems. They proposed an
object detection architecture for point cloud data and adapted
the Grad-CAM method for the same. The point cloud data
is voxelized using a voxelization method and features are
extracted using a Voxel Feature Extractor (VFE) network.
These features are processed by a series of convolutional
layers producing a multi-dimensional output tensor, with the
first two dimensions corresponding to the 2D grid of cells
that the whole region of interest is divided into. The third
dimension corresponds to the anchor boxes of different sizes
and the last dimension is a per-cell (or anchor) vector of
predicted feature values.

Matrone et al. [35] proposed BubblEX adapting
Grad-CAM for point cloud classification networks. Figure 11
illustrates this adaptationwhere the activations corresponding
to the last convolutional layer conv5 and the gradients
computed by backpropagation of the target class to the
conv5 layer are utilized. The product of these activations
and gradients is used as the saliency map to indicate the
importance of each point in the input point cloud data. The
authors extended this adaptation to provide explanation for

FIGURE 11. Adaptation of Grad-CAM for point cloud classification
network in [35].

networks designed for point cloud semantic segmentation
[34]. In this adaptation, the authors utilize the penultimate
convolutional layer for generating gradients and activations
for implementing Grad-CAM as the output layer is also
a convolutional layer. The gradients are computed for
individual class in the segmentation and a saliency map is
generated to highlight the importance of input features for
the corresponding class.

Huang et al. [21] proposed an interpretable module called
descriptor activation mapping (DAM) that is inspired by
Grad-CAM but includes modifications to suit the point cloud
registration model. The registration process aims to estimate
the transformation matrix between two point clouds using
the corresponding descriptors generated by the registration
model. Here, the individual values in the output descriptor
vector (or channel) are used as the loss for backpropagating
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to the target layer to compute gradients, unlike the target
class value in the original implementation. The descriptor
activation map is computed for each descriptor element that
describes the contribution of each data point in the input for
the same. The final descriptor map is generated by adding the
descriptor activation maps corresponding to all the descriptor
elements in the output.

Kuriyal et al. [23] proposed pGS-CAM (point Grad-Seg
Class Activation Mapping) that is inspired by the Grad-CAM
method for generating saliency maps (or explanations) for
neural networks performing semantic segmentation of point
cloud data. The authors use an aggregation operation to
capture the collective gradient impact across all logits corre-
sponding to a class at an intermediate activation layer. These
gradients are aggregated for each filter in the intermediate
layer and multiplied with the corresponding activations of the
filters. The proposed method also provides the possibility to
focus on a subset of points in the input data for which the
explanations can be computed by aggregating the gradients of
the logits corresponding to this subset. This helps in exploring
the explanations for specific segments in the output data.

Romaneli et al. [49] used gradients to analyze a point-
cloud-based transformer model intended for tasks such as
classification and reconstruction of point clouds representing
3D models. The input data is divided into multiple patches
and these patches are encoded (or embedded) using a neural
network before using them as input for the transformer model
that produces a feature vector for each of these patches.
To understand the importance of input data in generating the
feature vector for a particular patch, gradients are computed
by backpropagation from its feature vector to the embeddings
highlighting the importance of patches on the feature vector.

Gradient-based methods have gained popularity in the
last decade. This is mainly due to their attempt to provide
explanations for complex neural networks that are extremely
difficult to understand. Almost a quarter of the surveyed
works (11 out of 45) proposed gradients-based methods
reflecting the aforementioned trend in point-cloud-based
XAI.

C. PERTURBATION-BASED EXPLANATION
Perturbation-based explanations involve modifying the input
data to observe changes in the output value taken into
consideration. The amount of change in the output value
is interpreted as the extent of influence the perturbed input
features have on the output value. Some of the significant
XAI works in perturbation-based methodologies are SHapley
Additive exPlanations (SHAP) [32] and Local Interpretable
Model-agnostic Explanations (LIME) [47]. Some of the
surveyed point-cloud-based XAI literature proposed explain-
ability methods that use this mechanism to analyzeMLmodel
behaviour.

Shen et al. [53] proposed using Shapley values [52] to
evaluate the representation quality in a deep neural network
(DNN) performing point cloud classification. The point

cloud data is divided into multiple regions and sensitivity
metrics such as the regional rotation sensitivity, the regional
translation sensitivity, the regional scale sensitivity, three
types of regional structure sensitivity (sensitivity to edges,
surfaces, and masses) are used to evaluate the DNN model
taken into consideration. The perturbation is introduced by
resetting the coordinates of the subset of points to the center
of the point cloud and recording the corresponding change
in the output class value. This generates a sensitivity map
indicating how certain regions in the input point cloud data
influence the output value.

Zheng et al. [82] used a similar perturbation method to
analyze ML models working on point cloud classification.
They consider the spherical coordinate system and perturba-
tion is induced by moving the point towards the center of the
system and observing the change in the corresponding output
class value. This point shifting mechanism is assumed to have
a similar effect to the point dropping mechanism where a
particular point is dropped from the input point cloud and the
change in output class is used as the saliency attribution for
the dropped point. Figure 12 shows an example of the point
cloud saliency map generated in this work.

FIGURE 12. Saliency map for input point cloud classification network. The
color-coding is based on their score-rankings (higher value indicates
higher importance). Image taken from [82].

Verbung [72] proposed a perturbation method to analyze a
ML model working on point cloud semantic segmentation.
They focus on explaining the PointNet++ model that is
used for segmenting point cloud data representing catenary
arches. The perturbations are introduced bymodifying certain
objects in the input point cloud data and observe their effect
on the segmentation result. They change insulator shape,
insulator location and shape of the pole (introducing different
amounts of holes in the pole) in the input data and study their
effect on the output.

Tan and Kotthaus [65] adapt LIME to explain DNNs
working on point cloud classification. LIME is a local
surrogate model-based explainability method where multiple
perturbed input instances are created from the given input
data and a surrogate linear model is trained on these perturbed
instances to learn the decision boundary. Since a linear
model is used, it is easily explainable due to its transparency.
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In the adaptation, the authors divide the input point cloud
data into multiple regions using a clustering algorithm
and introduce perturbations based on these regions. These
perturbed instances are fed to the classification model to
record their corresponding output class scores. Then, they
trained a linear regressor that approximated the output class
score of the classification model taken into consideration.

Another interesting work by Tan addressing the explain-
ability issue using the perturbation methodology is presented
in [63]. Here, the author proposed a generative model-based
activation maximization (AM) method to explain a point
cloud classification model. We included this work to
the perturbation-based explanation category as it involves
modifying input data to maximize a particular class score
in the output vector. Initially, an autoencoder is trained
to reconstruct point cloud instances in the real data and
thus learning their distribution. Later, a latent vector (size
(k ∗ 1)) (as shown in Figure 13) is initialized and the
decoder part (generator) is utilized to generate point cloud
data from it. This generated point cloud data is then fed to
the autoencoder model to produce a point cloud data that
is close to the real ones. This data is used as the input
for the ML model. The target class value in the output
is optimized via backpropagation by modifying the latent
vector and generating corresponding input instances as shown
in Figure 13. The optimization leads to generation of a
point cloud data that maximizes the corresponding target
class value and thus, providing the information regarding
the geometrical structure that produces maximum value for
the target class considered. Comparing other input instances
with this point cloud provides an explanation regarding their
corresponding output values.

FIGURE 13. General overview of the architecture for point cloud
activation maximization (AM). Image taken from [63].

In addition to the activation maximization-based XAI
method mentioned above, the author also proposed
activation-flow based AM method called Flow AM [64]
that generates global explanations for the classification
network taking the activations of the intermediate layers
into account instead of using a generative model. The
neurons in these intermediate layers are forced (through the
regularization process) to align their activation values to the
ones corresponding to the real objects during the activation
maximization process while maximizing the target class
value in the output. The initial input for the AM process
is defined by computing the average of the points in the
test dataset for each class. The positions of the points are

regularized by limiting the expansion of outlying critical
points and minimizing the distance between the neighboring
points.

Tan also proposed a grouped feature ablation method
in [62] to understand the decision-making process of a
classification network. Here, a set of features are removed
from the whole dataset, the network is retrained and the
testset accuracy is recorded. This accuracy is compared to
the accuracy value obtained from the unablated testset. The
change in accuracy is used as the attribution for the features
removed.

Pölsterl et al. [44] proposed Shapley Value Explanation of
Heterogeneous Neural Networks (SVEHNN) that attempts
to explain Alzheimer’s diagnosis made by a DNN using
multi-input data consisting of the 3D point cloud of
the neuroanatomy and tabular biomarkers. They created
baselines for both the inputs and used these values to replace
corresponding features and compute the change in output
value. Zero is used as the baseline for tabular biomarkers and
for the point cloud data, they created a hull containing all
point clouds in the dataset from which the matching point is
selected as a replacement in the input instance.

Tan and Kotthaus [66] proposed two adversarial
attack-based explainability methods, One Point Attack (OPA)
and Critical Traversal Attack (CTA) for ML networks
working on the classification of point clouds representing
3D objects. The integrated gradients [60] method is used
to determine the critical points that are used to induce
perturbation into the input instance. Since the adaptation of
integrated gradients is not explained in the paper, we do
not explain it in subsection V-B. However, the adaptation
of gradient-based method is indicated in Table 1. In the
OPA method, the point with highest attribution (generated
by integrated gradients method) is selected and shifted with
an iterative optimization process until the output prediction
changes. In the CTA method, the process starts with one
critical point and later, other points are added to the critical
points set based on their integrated gradients attributions.
This addition of points to the critical set is carried out if the
perturbation of the current set does not alter the prediction
class.

Taghanaki et al. [61] proposed PointMask which is a
model-agnostic method used for attribution in point cloud
models. PointMask learns to mask out input points that
have negligible contribution to the model’s output. This is
implemented by introducing a differentiable layer before the
encoder part of the classification network that maximizes
the mutual information between the masked points and the
class labels. The masking is defined by a threshold that is
applied on the attribution values of the point cloud. Figure 14
shows the use of thresholding to identify points that have high
influence on the output value. Themaskingmechanism learns
tomask points during the training process of the classification
model. This is achieved by introducing a regularization term
in the loss function consisting of classification loss. Since this
method of masking input data is a type of perturbation-based
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mechanism, we have included this work in the perturbation-
based explanation subsection.

FIGURE 14. Thresholding in the PointMask method. Increasing the
threshold value (t) leads to the detection of points in the input data that
are more influential on the classification output. Image taken from [61].

Miao et al. [37] proposed a method called Learnable
Randomness Injection (LRI) that detects points in the
input point cloud data that influence the output class
label. The method is proposed for geometric deep learning
(GDL) models working on the classification of point clouds
belonging to the high-energy physics and biochemistry field.
The idea of LRI method is to learn injecting randomness to
the input data along the training process. The architecture
of the network consists of an interpreter g and a classifier f
as shown in Figure 15. The interpreter learns to encode the
input data and generate randomness to induce perturbation
to the data. The classifier learns to classify the perturbed
data using the output of the interpreter. The authors use two
types of randomness. The Bernoulli randomness is added
to measure the existence importance of points (top row in
Figure 15) and the Gaussian randomness is used to analyze
the location importance of points in the input data (bottom
row in Figure 15).

FIGURE 15. The architectures of the LRI method using Bernoulli and
Gaussian randomness. Image taken from [37].

Atik et al. [3] adapted SHAP for a point-cloud-based classi-
fication network and also proposed the use of filter-based fea-
ture selection algorithms to determine the importance of input
features. Theymainly focused on the explanation of ensemble
ML models performing the point cloud classification task.
The filter-based feature selection algorithms use two types
of methods to generate importance for input features. The
first method computes feature’s importance by utilizing the
network’s prediction on the input data containing all the
features and the perturbed input data that does not contain
the feature taken into consideration. The second method
is described in subsection V-D as it uses example-based
explanation mechanism.

Shen et al. [54] proposed a set of generic rules
for modifying a point-cloud-based neural network to a
rotation-equivariant quaternion neural network (REQNN).

To evaluate the performance of REQNNs with respect to
different rotation angles of the input point cloud data, the
authors compute Shapley values for comparison. Here, the
input point cloud data is uniformly divided into n regions
and the Shapley values for each region are computed. They
perturb the input data by moving the points belonging to the
regions to be excluded to the center of the input point cloud
data instead of removing them from the input point cloud
data. The stability of these regional attributions is calculated
by computing the cosine similarities between input point
clouds with different rotation angles.

Lavasa et al. [26] proposed an AI-based method to predict
the point-wise accuracy of laser scanners across the surface
of the object represented by point cloud data. In other words,
the method outputs one value for each point in the input point
cloud data to indicate how accurately a certain laser scanner
has captured it. This process is performed for obtaining
accuracy values for points along each of the three axes
(x, y, z). They developed a model that predicts the accuracy
of laser scanning devices and also informs the users about
the features that influence these predictions. To provide the
explanation, the authors adapted the SHAP method (based
on the cooperative game theory) to the input point cloud data
and computed Shapley values that highlight the importance
of individual points on the prediction.

The large number of papers falling into this category (15
out of 45) could result from the fact that the basic mechanism
of perturbation-based methods does not rely on the network
architecture. This makes it easier to adapt methods devised
for other data types to models dealing with point clouds.

D. EXAMPLE-BASED EXPLANATION
As explained in subsection IV-A, example-based explana-
tions utilize the concept of input instances’ comparison to
provide an explanation for the decision-making process of
the model. Heide et al. [19] utilized this mechanism to
generate explanations for the semantic segmentation of point
cloud data and proposed an approach named X3Seg. The
method provides explanations by selecting the most similar
and most dissimilar point sets with respect to the input
point cloud being examined. It consists of three methods:
Encompassing (EX), Selective (SX), and Predictive X3Seg
(PX). The encompassing method selects examples from the
whole training dataset whereas the selective method selects
from a smaller subset that represents the whole dataset.
An example of the explanation is shown in Figure 16.
Atik et al. [3] proposed two filter-based feature selec-

tion algorithms to generate explanations for ensemble ML
networks working on point cloud classification. One of
the methods involves the perturbation mechanism and is
explained in subsection V-C. The other method determines
the importance of features by comparing the samples that
are similar to the input instance and another set of randomly
selected samples from the training set. The importance of
a feature is reduced if it has different values (in the input
instances) in the similar input samples selected. In the
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FIGURE 16. Example-based explanations with encompassing (a-d, EX),
predictive (e-h, PX), and selective X3Seg (i-l, SX) (S indicates the
similarity score): (a), (e), (i) coherent 3D point sets for explanation; (b),
(c), (d), (f), (j) best same-class prototypes from prototype database
(Sb = 0.113, Sc = 0.178, Sd = 0.192, Sf = 0.016); (g) best different-class
prototypes (Sg = 0.014, pole); (h), (l) worst-matching prototypes
(criticism; Sh = 4.154, building). Image taken from [19].

dissimilar samples, if the feature has different values, then
its importance value is increased.

Example-based explanation is a unique type of explanation
as it uses the concept of similarity between input data
instances to provide explanations. In this survey, only two
papers used this mechanism to provide explanations for
the point-cloud-based AI models. One of the papers (
[19]) relies on human interpretation to determine important
features in the input instances that are similar to the input
instance under consideration as it does not produce saliency
maps from the comparison. However, the other paper ( [3])
computes saliency attributions for input features based on the
comparison of the input instance with similar and dissimilar
data instances selected for explanation.

E. ACTIVATIONS OF INTERMEDIATE LAYERS
The use of activations of intermediate layers has been
one of the most common methodologies of analyzing and
understanding the working of AI models. Layer activations
provide humans with the information pertaining to feature
detection in corresponding layers. The explanation of the AI
model using the layer activations relies on the analysis of
these activation values. Some of the literature selected in
this survey use this mechanism to provide insights into the
working of ML models.

Zhang et al. [80] visualize the activations of the first layer
(see Figure 6 for the architecture) to indicate the features
learned by the corresponding layer. The authors show that the
first layer learns to detect common patterns such as corners
in the input point cloud data.

Qi et al. [45] used the activations of an intermediate layer
to indicate critical points in the input point cloud data that
influence the decision-making process of the ML model.
The authors make use of the max pooling operation on the

FIGURE 17. An overview of the PointNet architecture for point cloud
classification proposed in [45].

preceding layer in the network to determine these critical
points (see Figure 17). These are then identified in the input
data to highlight their importance. Figure 18 shows some
examples of the critical points identified in four input data
instances.

FIGURE 18. Critical points in the input data that influence the output. The
color-coding is based on the depth information. Image taken from [45].

Levi et al. [27] extended this concept of critical points
[45] by introducing discrete and continuous measures to rank
the points in the point cloud based on their importance. The
ranking is performed on the activations of the intermediate
layer that is subjected to max pooling operation in [45]. The
discrete measure assigns ranking based on howmany features
corresponding to each point (in the output of the intermediate
layer) contribute to the global feature vector when subjected
to the max pooling operation. The smooth measure takes all
the activation values (per point features) corresponding to
each point into consideration and ranks the points based on
the aggregate of these per point features obtained from the
intermediate layer that precedes the pooling layer.

Huang et al. [20] proposed the class attentive inter-
pretable mapping (CLAIM) approach to understand the
decision-making process of the PointNet network proposed
in [45]. They replace the global max pooling layer (shown in
Figure 17) with global average pooling layer in the network.
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Then, they use the input and the ouput of this pooling
layer along with the network weights associated with the
following layer and the output layer to generate saliencymaps
for the input point cloud data. Such saliency maps can be
generated for individual classes in the output vector to study
the influence of each feature in the input data on the output
classes.

Zhao et al. [81] proposed an interpretation network that
is based on 3D point cloud deep neural networks to get
better insights into the 3D convolutional operations. Figure 19
shows an overview of the interpretation network with a
dynamic graph CNN (DG-CNN) [73] as the basic line
network. The network’s input is a point cloud of 3D objects
containing n points with their x-, y-, and z-coordinates.
The input data goes through multiple DG-CNN layers and
multi-layer perceptron (MLP) layer before it splits into two
classification networks as shown in Figure 19. The internal
consistency network is used to obtain the feature map of each
filter in the convolutional layers that are the intermediate
layers. The authors determine fully activated and partially
activated filters by adding up all the features produced by
each filter and exploring the mean and standard deviation of
these features. The external consistency network is used to
generate attributions (class activation maps) of each point in
the input to the classification output. These activation maps
are generated from the n×C output of the intermediate layer.

Yang et al. [77] proposed a folding-based autoencoder
called FoldingNet that reconstructs point clouds representing
3D objects. Here, the folding refers to a decoding operation
proposed by the authors. They visualize the outputs of
intermediate layers to understand how the network learns
during the training process as shown in Figure 20.

The folding operation is implemented by introducing an
m-by-2 matrix containing m (the number of points in output
point cloud) grid points to the latent space features produced
by the encoder. The latent space features are replicated m
times and them×2matrix is concatenatedwith these features.
The output of this concatenation operation is processed by
a three layer perceptron (first folding operation) producing
m×3 output. The replicated features are concatenated to this
output and a folding operation is applied on it again producing
m×3matrix. The outputs of these folding operations are used
to understand how the network learns to capture the structural
information in the input point cloud data over the training
process.

Cao et al. [8] adapted this folding mechanism to provide
explanations for the working of deep learning networks
working on point cloud classification. They adapt it by
introducing the decoder network to the classification. The
decoder takes the latent feature vector computed by one of
the intermediate layers (max pooling layer) as input and
reconstructs the input point cloud using folding operations.
Visualizing the outputs of these folding layers (as shown in
Figure 20) provides insights (as described in the previous
paragraph) into the learning process of the network during
the training process. The authors also extended the 3D class

activation mapping mechanism proposed by Huang et al.
[20] for understanding PointNet [45] network (the CLAIM
approach) to understand the decision-making processes of
other types of point cloud classification networks.

Thomas et al. [67] presented Kernel Point Convolution
(KPConv) that performs convolution operations directly on
the point cloud without any intermediate representations.
To understand the classification network built using KPConv
layers, the authors visualized activations of the intermediate
KPConv layers by projecting them on the input point cloud
data to highlight the features detected by these layers when
classifying 3D objects represented by point cloud. This
visualization demonstrated that the layers in the initial part
of the network detect low-level features such as corners or
vertical and horizontal planes and in the latter layers, the
network detects complex features such as cones and stairs.

Shen et al. [55] proposed the use of a kernel correlation
layer and a graph-based pooling layer to capture local
geometric structures with a clear geometric interpretation.
The kernel here refers to a set of learnable points whose
positions are modified through backward propagation as the
network learns to detect specific features in the input point
cloud data. The authors use the visualization of the features
captured by these kernels to provide an insight into what the
network has learnt during the training process.

Zhang et al. [79] proposed methodologies to understand
the working of a PointNet network used for classification
purpose. They proposed visualizing point functions and
generating class-attentive response maps to understand the
network’s decision-making process. The point functions
correspond to the global features produced in the PointNet
network shown in Figure 17. Thus, visualizing the point
functions helps us understand what each global feature
represents in the input data. To get additional insights into
how the input features influence each class, they modified
the PointNet architecture to generate class-attentive global
features and class-attentive response maps. An overview of
this architecture can be seen in Figure 21. The modification
is performed by removing the max pooling layer in PointNet
and adding an MLP layer to reduce the dimension ((to
obtain class attentive features) of the per-point features to the
number of classes, C , and perform global average pooling
operation to generate an output vector.

Mokhtar et al. [40] adapted the layerwise-relevance
propagation (LRP) [4] method for machine-learned partical
flow (MLPF) network that works on charged particle track
reconstruction. The input data consists of a set of detector
(that detects charged particles passing through) elements such
as the energy of the particles and the azimuthal angle and
the ML model predicts the corresponding set of particle flow
candidates. The input data is converted into a graph data
before feeding it to theMLPF networkwhich is a graph neural
network (GNN). Thus, the aggregation of messages from
neighboring nodes in the graphs is also taken into account
by the authors when applying LRP. They distribute relevance
scores per node using the weights and layer activations in
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FIGURE 19. An overview of the interpretation network. Image taken from [81].

FIGURE 20. FoldingNet architecture. The color gradient is used to
illustrate the correspondence between the 2D grid and the reconstructed
point clouds after folding operations. Image taken from [77].

FIGURE 21. An overview of the network architecture and the
explainability mechanisms proposed by Zhang et al. in [79]. Image taken
from the same literature.

the network, and thus indicating the node’s contribution
to the relevance of the node in the following layer. This
method utilizes the activations and weights associated with
the intermediate layers to generate saliency attributions for
the input data.

Liang et al. [28] proposed a method to compute saliency
maps for point-cloud-based classification networks. The

method intends to find several non-contribution factors in the
input space. Moving any point in the point cloud to these
non-contributing factors’ positions leads to change in the
output value similar to the point dropping method where the
influence of the point is nullified by dropping it from the input
data. The authors perturb the input by releasing several free
factors in the target space and compare the pooled features
(features obtained after using a pooling layer in the network)
and determine the regions that do not contribute to the output
value.

Levi et al. [78] proposed a method called Feature Based
Interpretability (FBI) that uses the output values of a specific
intermediate layer to generate explanations for the working of
a point-cloud-based classification network. They use the per
point features computed by the network with an architecture
similar to the one shown in Figure 17 before they are
subjected to a max pooling operation. The L1 norm of these
features is computed and is used as an importance indicator of
the individual points in the input point cloud data.We classify
this method as amodel-specific XAImethod as it relies on the
per point feature computation for generating explanations.

Katageri et al. [22] proposed a representation learning (or
embedding) mechanism that learns Wasserstein embeddings
from 3D point cloud data. The network utilizes MLP layers
in the initial stages to capture features in the input data
and these layers are followed by a max pooling operation.
The output of the max pooling layer indicates the set of
points (known as critical points) that contribute to the global
embeddings. The authors visualize these critical points to
provide an explanation to the embedding process.

Romaneli et al. [49] used attention visualization to
provide explanations for the working of point-cloud-based
transformer model apart from the gradient-based explanation
described in subsection V-B. Here the authors use the
parameters (or weights) and activations of the intermediate

146846 VOLUME 12, 2024



R. N. Mulawade et al.: XAI for Methods Working on Point Cloud Data: A Survey

layers to compute attention scores for the input point cloud
patches and thus indicating their importance for the output
value.

The use of activations of intermediate layers is one of the
most widely used methods to understand the working of AI
models. This is also highlighted in the point-cloud-based XAI
as 13 out of the 45 surveyed papers use this mechanism to
generate explanations for the working of the AI models. Two
of the surveyed papers ( [8], [77]) that attempted to analyze
the point-cloud-based models during the training process also
used this mechanism to generate explanations.

F. COMPARISON IN LATENT SPACE
Comparison of data in latent space can provide some
important insights into how an AI model learns to distinguish
between input instances belonging to different classes. It also
helps model developers to determine input samples that are
hard to classify for the AI model. In our survey, we identified
three papers that utilize this mechanism to provide an
explanation for the decision made by the AI model.

FIGURE 22. Comparison of input data instances in latent space using
dimensionality reduction techniques. The points are colour-coded based
on the class these data instances belong to. Image taken from [35].

Matrone et al. [35] proposed BubblEX that utilizes,
in addition to the gradient-based method (explained in
subsection V-B), the comparison of input instances in latent
space as an XAI mechanism. This mechanism is illustrated
in Figure 22. The features learned by the model from the
input point cloud data are extracted from the hidden (or
intermediate) layers of the AI model. These features can
be extracted at any intermediate layer. However, AI models
tend to capture complex features in the deeper layers while
the initial layers capture basic features. To address the issue
of high-dimensionality of the learned features, the authors
make use of dimensionality reduction techniques such as t-
SNE [71] and UMAP [36] for visual analysis in 2D. Each
point in the 2D plot represents one input data instance. This
comparison of input data instances in latent space allows us
to understand if and how well the network is discriminating
different classes of the dataset within its architecture. The
authors extended BubblEX to understand the working of AI
models working on heritage point cloud data intended for
semantic segmentation tasks [34]. They used both t-SNE and
UMAPmethods for dimension reduction to visualize the data
in 2D. However, this visualization differs from the original

implementation as it visualizes the learned features of only
one input instance. Here, each point in the 2D plot actually
represents one of the points in the input data and the points
are colour-coded based on the prediction or the segmentation
label of the input data. The clusters indicate how successful
the model has been in identifying objects of different classes
in the input heritage point cloud data.

In addition to the above mentioned two papers, Beetz et al.
[5] also utilized the mechanism of comparing input data
instances in latent space to provide explainability for the
multi-objective (reconstruction and classification) AI model.
The latent space encodings of the input point cloud data are
computed using the encoder branch of the trained model.
These latent space encodings are then visualized on a
2D plot using the Laplacian eigenmap algorithm, a non-
linear dimensionality reduction method, that reduces the
dimensions of these encodings to two (see Figure 23).

FIGURE 23. Comparison of the end-diastolic (ED) and end-systolic (ES)
input instances (shown with their corresponding left ventricular ejection
fraction (EF) values) using their latent space features. Image taken
from [5].

Su et al. [59] proposed a deep learning framework
that extracts interpretable latent representation of pose and
bodytype information from the human point cloud data.
The framework is an encoder-decoder architecture with
two additional encoders (Ep,Eb) that extract specific latent
features corresponding to pose and bodytype respectively
from the output of the primary encoder, E . This is
enforced by deploying a classifier to each of the branches
of Ep and Eb to enforce the learning of these specific
representations. To verify the representation learned by the
network, the authors visualize the latent features produced
by Ep and Eb in 2D using t-SNE. The visualization shows
that data points corresponding to data belonging to the
same categories or representing similar poses lie close to
each other.

In our survey work, only four of the surveyed papers
used the methodology of comparing latent features for
model analysis. This is probably due to the inability of
this mechanism to provide explanations for a single input
instance and indicate important features in it. However,
it helps in understanding how well the network has learned
to distinguish input instances belonging to different classes.
It can also be used to understand how well the intermediate
layers in a neural network distinguish input instances
belonging to different classes.
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VI. SURVEY INSIGHTS
In this section, we provide valuable insights that can be
observed from the classification of the collected literature.
Since the focus of this survey paper is on the point-cloud-
based XAI methods, we first look into the type of point cloud
class in Table 2. We observe that a large number of literature
(62%) is dedicated to the explanation of AI models working
on point clouds representing 3D objects such as plane, table
and chair (see Figure 24). This trend may be attributed to
the development of methods and hardware that make the
generation and measurement of point clouds from 3Dmodels
easier.

FIGURE 24. Representation of the collected literature based on the type
of point cloud data used for analysis.

This is followed by the point clouds that represent outdoor
areas such as train lines and archaeological sites. However,
it is interesting to note that there are four papers (as
indicated in Table 2) that deal with point clouds in the field
of particle physics. These point clouds represent charged
particle trajectories which is an interesting type of point cloud
data compared to the more general point cloud data that
represent 3D objects.

A. TRADE-OFF BETWEEN PERFORMANCE AND
INTERPRETABILITY
The exponential rise in the use of AI models to perform
numerous tasks is due to their ability to learn complex
features and thereby leading to better performance. But this
ability to learn complex features needs larger models and this
comes with a drawback which is the lack of transparency.
Therefore, the use of AI models involve a trade-off between
performance and interpretability. This depends on the type
of task being performed and the margin of error allowed
when performing this task. Tasks that involve a very low
margin of error are generally critical tasks involving high risk
factors. This makes explainability an important requirement
for application in real-world. In our surveyed literature,
we observed that there are only six papers that proposed
fully or partially transparent models. The remaining literature
cater to the explanation of complex models which highlights
the trade-off between performance and interpretability during
the development of these AI models. In addition, it also

underlines the need formore XAIwork focused on explaining
complex AI models.

B. ADAPTATIONS OF EXISTING XAI METHODS
One of the important observations in our list of surveyed
papers is the adaptation of many existing XAI methods
that were originally developed for AI models working on
different datatypes. This makes sense given the fact that
these XAI methods are well-known XAI methods providing
explanations for models working on datatypes such as image
data. In our survey, 12 of the surveyed papers ( [14],
[34], [35], [50], [21], [41], [42], [53], [3], [44], [54], [65])
adapted well-known XAI methods such as SHAP, integrated
gradients, SmoothGrad and LIME.

C. VISUALIZATION
One of the major difficulties in analyzing the results of XAI
methods is the lack of ground truth. This also makes it
hard to compare the results of XAI methods to determine
the method providing better explainability. Therefore, the
quality of results produced by these XAI methods rely a lot
on the human interpretation. Visualization is an important
tool used for this purpose. It helps humans in exploring
the output provided by these methods and finding hidden
insights. Some of the prominent examples of XAI works
utilizing visualization tools are the ones that produce saliency
maps (for example: Grad-CAM [51] and Integrated gradients
[60]) to help humans understand the decision-making process
of a model. A large section of the surveyed literature
makes use of visualization tools to highlight feature learning
and feature importance as shown in Table 1. Since the
input data is point clouds, most of these works use 3D
visualization to provide explanations. One of the interesting
works that uses interactive tools is by the authors of [41]
who proposed an interactive visual analysis tool that allows
the users to explore a large amount of XAI data. However,
it is important to note that some XAI mechanisms do not
completely rely on visualization. One such mechanism is the
transparency mechanism where the functioning of individual
layers in the model architecture is transparent and thus, easily
understandable without the need for visualization. However,
in some cases, authors do use visualization to highlight the
features detected by these layers to the users.

D. USE OF DIMENSIONALITY REDUCTION TECHNIQUES
The use of high dimensional data makes it possible for the
data to carry very complex information. However, it becomes
more and more difficult to explore such data due to difficulty
in visualizing high dimensional data. It also leads to high
computational costs when used in algorithms such as ML-
based algorithms. Point clouds are already represented in
3D and additional features associated with individual points
in it lead to difficulty in visualizing them in 3D space.
Thus, many of the works involve using dimensionality
reduction techniques to address these issues. In the surveyed
papers, seven of the papers make use of dimensionality
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reduction techniques to address these issues. Three of them
use it to visualize the latent features of input point cloud
instances in 2D [5], [34], [35], [59]. Zhang et al. [80]
utilized the dimensionality reduction techniques to reduce
the number of features computed by previous layers in
the ML network. Mulawade et al. [41] and Kuriyal et al.
[23] used dimensionality reduction techniques to visualize
high-dimensional saliency attributions in 2D and 3D.

E. MODEL-RELATED OBSERVATION
A lot of work in AI is related to supervised learning
algorithms that learn to produce an output by training on
the data and corresponding ground truth values. This is also
reflected in the XAI methods developed for point clouds
related XAI works as shown in Table 2. Only two papers
(i.e. [42] which is further extended in [41]) deal with XAI for
RL models working on point cloud data. In addition, we also
observe a similar trend (with respect to the research work
related to the supervised learning algorithms) in the type of
model task involved in generating explanations with 31 out
of the 45 surveyed papers containing the classification-based
models compared other task based models. This observation
reflects the amount of work going into the supervised learning
and classification oriented AI model development.

Regression is one of the basic and widely used techniques
in ML. However, there are not many works in point-cloud-
based AI and XAI that make use of this task. Majority of
the works cater to the classification and segmentation tasks.
This can be observed in Table 2 for point-cloud-based XAI
works. In our surveyed papers, only one paper (i.e. [26])
attempted to provide explanations for a point-cloud-based
model performing regression task.

VII. CONCLUSION
In this paper, we provided an overview of the recent
developments in the field of XAI focused on point cloud data.
We classified the literature based on multiple criteria making
it easier for the readers to distinguish XAI methods and
identify specific works that fit their use case. We explained
the methods in detail and highlighted the fundamental
mechanisms employed by these methods to explain AI and
MLmodels. In addition, we also provided interesting insights
such as the importance of visualization for interpretation and
the need for dimensionality reduction techniques to address
high dimensionality problems in these papers.We believe that
there is a high potential in the field of point-cloud-based XAI
as point cloud data becomes more mainstream in industrial
applications. Moreover, XAI, in general, is an important
sub-field of AI. However, as per our observation, there are
no dedicated conferences or journals for XAI. We hope the
coming years will see more focus on XAI and thus, see more
dedicated journals and conferences that delve deeper into the
field.
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