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ABSTRACT

In this work, we propose a novel segmentation-based explainable artificial intelligence (XAI) method
for neural networks working on point cloud classification. As one building block of this method, we
also propose a novel point-shifting mechanism to introduce perturbations in point cloud data.

In the last decade, Artificial intelligence (Al) has seen an exponential growth. However, due to the
"black-box" nature of many of these Al algorithms, it is important to understand their decision-making
process when it comes to their application in critical areas. Our work focuses on explaining Al
algorithms that classify point cloud data. An important aspect of the methods used for explaining
Al algorithms is their ability to produce explanations that are easy for humans to understand. This
allows the users to analyze the performance of Al algorithms better and make appropriate decisions
based on that analysis. Therefore, in this work, we intend to generate meaningful explanations that
can be easily interpreted by humans. The point cloud data considered in this work represents 3D
objects such as cars, guitars, and laptops. We make use of point cloud segmentation models to
generate explanations for the working of classification models. The segments are used to introduce
perturbations into the input point cloud data and generate saliency maps. The perturbations are
introduced using the novel point-shifting mechanism proposed in this work which ensures that the
shifted points no longer influence the output of the classification algorithm.

In contrast to any previous methods, the segments used by our method are meaningful, i.e. humans
can easily interpret the meaning of these segments. Thus, the benefit of our method over other
methods is its ability to produce more meaningful saliency maps. We compare our method with the
use of classical clustering algorithms to generate explanations. We also analyze the saliency maps
generated for some example inputs using our method to demonstrate the usefulness of our proposed
method in generating meaningful explanations.
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Figure 1: An overview of the XAl pipeline proposed.

1 Introduction

Explainable artificial intelligence (XAI) has become an important field of research in the last decade. This is mainly
due to the exponential growth in Al which is finding use in almost every field of application from agriculture to
autonomous vehicles. Al algorithms are now capable of performing various difficult tasks with high accuracy. This
has prompted industries belonging to various fields to incorporate Al algorithms and improve the performance of
various tasks performed in those industries. However, most Al algorithms performing challenging tasks have complex
architecture which makes it highly difficult to understand how the algorithm is making a decision. Therefore, many
such Al models are referred to as "black boxes". This is one of the primary concerns related to Al that hinders the use
of Al algorithms in high-risk tasks. Thus, as Al algorithms learn to perform more complex tasks, the need to understand
their decision-making process becomes more important. Our work contributes to this important field of research.

Al algorithms work on various types of data such as text, tabular, image, and point clouds. In this work, we propose
an explainability method that focuses on explaining the classification models working on point cloud data as we see
a growing trend in the use of point cloud data for AI model development in the last decade [3]] [2]. We also observe
a similar trend in XAl research work targeting algorithms working on point cloud data [[11] [27] [9] [28]. However,
there is still a significant gap between the XAl work developed for data types such as image and text compared to point
cloud data. Therefore, through our work, we attempt to reduce this gap by contributing a method based on meaningful
segmentation to the point cloud-based XAl field of research. [Figure T|shows an overview of our proposed method.

The main contributions of our work are:

» Segmentation-based XAl for understanding classification networks working on point cloud data. The proposed
method is a perturbation-based method and it is model-agnostic.

* Proposal of a novel point shifting mechanism for the perturbation of point cloud data.
* Two types of introducing perturbations to generate explanations that provide different interesting insights.

* Detailed analysis of the proposed method against clustering-based methods to highlight its advantages. The
analysis shows how the proposed method generates meaningful explanations.

The rest of the paper is organized as follows: Section [2] gives a detailed overview of the literature that is relevant to
our work. Section [3]describes the proposed XAI method in this work and the perturbation mechanisms utilized for
generating saliency maps. It also provides an overview of the data and Al models used in this work. Section 4] provides
a detailed analysis of the proposed method using multiple examples to indicate the usefulness of our method. Section[3]
contains our final remarks regarding the work and the direction in which the future work can progress.



2 Related Work

As point cloud data is gaining importance in Al developments, the research related to explaining AI algorithms working
on point cloud data has also seen an upward trajectory. Many authors have attempted to provide explanations for these
algorithms employing various types of explainability mechanisms. Mulawade et al. [[11] have provided a detailed survey
of all the XAI literature addressing the issue of explainability for Al models working on point cloud data. Saranti et
al. [14]] provided a survey focusing specifically on the explainability of graph neural networks (GNNs) working on point
cloud data. Among the different types of XAl methodologies proposed in the past, the perturbation-based methods have
found greater importance in explaining point cloud-based Al models. This is evident in the list of papers surveyed by
the authors in [[L1] with papers proposing perturbation-based XAI methods being the highest in number among the
methodologies used. Some of the most prominent perturbation-based methods (considering all types of data such as
image, text, and point clouds) are SHapley Additive exPlanations (SHAP) [[7] and Local Interpretable Model-agnostic
Explanations (LIME) [13]. The perturbation-based XAl methods for point cloud data use different types of perturbation
to generate explanations for the working of Al models. We describe them below and highlight the need for our work.

Zheng et al.[28]] proposed an XAI method that computes saliency maps by introducing perturbation into the input
data. The perturbation method used in this work uses the process of moving a specific point to the center of the point
clouds to introduce perturbations in the input data. The authors consider the spherical coordinate system to compute the
attributions corresponding to the points as they are gradually shifted to the center of the input data.

Taghanaki et al.[19] proposed a perturbation-based XAI method for explaining classification networks working on point
cloud data. They proposed a method called PointMask which learns to mask out points in the input data based on their
contribution to the output class score.

Shen et al.[[16] proposed a perturbation-based XAl method for analyzing the classification network working on point
cloud data. The authors used Shapley values|15]] to compute saliency maps. The input point cloud is segmented into
a fixed number of regions and points belonging to specific regions are moved to the center of the point cloud data to
measure the changes in the output target class to generate a saliency map.

Verbung [25]] proposed a perturbation-based XAI method for understanding a segmentation model working on point
cloud data. The author introduced perturbations into the input data by modifying specific regions (such as the shape of
a manually selected part of an object) in the input point cloud data and measuring the effect of this perturbation on the
segmentation output.

Tan et al.[23] proposed an XAI method that adapts LIME [13] to explain the decision-making process of classification
models working on point clouds. The point cloud data is divided into multiple regions using a clustering method and
perturbations are introduced using these clusters to compute saliency maps using the LIME methodology.

Tan [21] proposed another perturbation-based XAI method for point cloud-based Al models that perform a classification
task. In this method, the target output class score is maximized by modifying manually selected parts of the input data.
The authors made use of autoencoders to encode and generate new input samples.

Tan [20] also proposed an XAI method for understanding a classification network working on point cloud data that is
based on feature ablation. The author proposed removing specific features (identified by the author) from all the data
instances in the training dataset and retraining the model on the perturbed data. The change in classification accuracy
achieved by the model is then used as an attribution that indicates the importance of the removed features.

Tan and Kotthaus[24] used integrated gradients[18] to identify critical points in the input point cloud data and use these
critical points to perturb the input data.

Miao et al.[10] proposed Learnable Randomness Injection (LRI) that provides an explanation for the working of a
classification model with point cloud data as its input. The proposed method learns to inject randomness (perturbation)
into the input data during the training process taking into consideration the performance of the Al model in classifying
the data.

The most recent contribution of Tan[22] to the topic proposes an activation-flow-based AM method named Flow AM
that makes use of the activation maximization of the output target class and also forces the neurons in the intermediate
layers to align their activation values to the values that correspond to actual input instances during this process.

Atik et al.[[1] adapted SHAP for interpretation of the classification model working on photogrammetric point cloud data.
The authors mainly focused on the explainability of ensemble classifiers in this work.

Another adaptation of Shapley values for understanding point cloud-based Al models was proposed by Shen et al.[17]]
where the authors divided the input point cloud data uniformly into multiple regions and computed Shapley values. The



perturbation method used in this work was the "point shifting” mechanism where the points of some regions are moved
to the center of the point cloud data.

Lavasa et al.[6] adapted SHAP for analyzing the performance of Al models that predict the accuracy of laser scanning
devices.

However, none of the above methods mention or describe using meaningful segments to introduce perturbations into
the input data unless introduced manually by the developers of the methods. The use of meaningless segments for
perturbation leads to the generation of saliency maps with attributions assigned to data points that are difficult to
interpret. Furthermore, methods employing the perturbation mechanism by shifting or removing individual points are
computationally expensive. In addition to this, we also believe that individual points do not carry important information
such as structural information that is crucial information in point clouds. This important information is captured by a
set of points. Therefore, the perturbation mechanism should consider using sets of multiple points in the point cloud
data to introduce perturbations instead of individual points. Furthermore, the information captured by these sets of
points should be meaningful. This leads to the generation of saliency maps that are meaningful, and therefore, easy for
humans to interpret. In addition to this, perturbations introduced into the input data should generate an input where
specific features have no influence on the output.

In this work, we propose a perturbation-based method that makes use of meaningful segments generated by an algorithm
to perturb the input data and compute attributions based on the change in the output value of the target class. We
also propose a point-shifting mechanism for introducing perturbations in point cloud data that meets the requirement
mentioned above.

3 Segmentation-based XAI

The proposed segmentation-based XAI method for point cloud classification models utilizes a segmentation model that
generates meaningful segments from the given input point cloud data. An overview of the proposed method is shown in

It consists of four stages:

¢ Classification
* Segmentation
¢ Perturbation

* Saliency mapping

In the first stage, the input point cloud data is used as the input for the classification model which predicts the output
class of this data. This is the same classification model that we intend to understand in the XAl process. Based on the
output class, the corresponding segmentation model is chosen from the list of pre-trained models. In the second stage,
the selected segmentation model is used to meaningfully segment the input point cloud data. The resulting segments are
used in the third stage to perturb the input data. Using the classification model and the perturbed input data, a saliency
map is computed in the final stage of this pipeline.

3.1 Segmentation

In our XAI method, we intend to segment the input point cloud data in a meaningful way. This means that the segments
produced by the segmentation mechanism are easy to understand for humans. For example, the segmentation of point
cloud data representing a human 3D model into segments that represent the head, hands, legs, and torso. In our work,
we use two segmentation mechanisms to divide the input point cloud data into multiple meaningful segments. These are
explained below.

3.1.1 Segmentation mechanism

This mechanism consists of Al models that are trained for part segmentation tasks on the point cloud data. These
models use the same input data that is used by the classification model, identify different meaningful segments in
the data, and assign them with specific labels. The dataset used in our work consists of point cloud data instances
representing 16 types of 3D models. To ensure better performance, we train segmentation models to segment data
instances representing a specific 3D model such as airplanes or cars instead of training one single segmentation model
to segment point clouds representing every kind of 3D model. Therefore, we have 16 segmentation models with each
model catering to segmenting a specific type of point cloud data. shows the segmentation of point clouds
representing an airplane, a chair, and a rocket by the three corresponding segmentation models.
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Figure 2: Examples of point clouds segmentation performed by our segmentation models and their corresponding
ground truth labels.

3.1.2 Segmentation+Clustering mechanism

The dataset taken into consideration in this work contains point clouds representing various types of 3D models. Some
of these models contain features that consist of more than one part, such as the four wheels of cars, the two wheels of
motorbikes and the two wings of airplanes. The segmentation algorithms classify these features as one class/group. This
leads to perturbations where all parts of these features are shifted (in case of presence of a feature mechanism, see[3.2.2)
to a chosen point or retained (in case of absence of a feature mechanism, see[3.2.1)) in the input with remaining segments
shifted to the chosen point. This leads to the generation of saliency maps that contain the same saliency attribution value
attached to these features belonging to a single class. This can be observed for the wings of airplanes in the saliency
maps visualized in [Figure 4c|and [Figure 6aland their corresponding bar plots [Figure 4d|and |Figure 6b, However, the
relevance of these multiple features that are grouped into one class is not identical in many cases. Therefore, it can
be important to understand the influence these individual features have on the output class score in addition to their
influence as a group.

To generate saliency maps for individual features, we made use of clustering algorithms for the segmentation-based
mechanism to further segment the input point cloud data. The segmentation model’s output is used by the clustering
algorithms to further cluster the data. We use two clustering algorithms: 1) DBSCAN [4] for determining the number
of clusters in a given segment of the segmentation output. 2) KMeans [8]] clustering algorithm to cluster the given
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Figure 3: Clustering of the segments produced by the segmentation models to obtain finer segments.

segment based on the number of clusters determined by DBSCAN. We use this combination because the DBSCAN
algorithm tends to classify some of the outlying points of the segment as outliers and assigns a separate value to
them. This leads to undesired clusters. To avoid this, we combine it with KMeans which takes the number of clusters
(without taking outliers’ class into account) as input and produces the desired number of clusters. shows
examples of the segmentation of point clouds representing a motorbike and an airplane using the segmentation and
segmentation+clustering methods. is the output of the segmentation model that identifies the wheels of the
motorbike as one segment. Similarly, the wings and engines are labeled as a single segment each, as shown in[Figure 3¢]
The segmentation+clustering algorithm clusters the wheels of the motorbike to produce front and rear wheels as shown
in[Figure 3b] The method also clusters the wings of the airplane into two separate clusters. A similar result is observed

with respect to the engines of the airplane as shown in

3.2 Perturbation mechanism

As mentioned in the proposed XAI method in this work is a perturbation-based method. We use two types of
perturbation introducing mechanisms to generate saliency attributions providing interesting insights into the working of
the classification model. We explain these mechanisms and the rationale behind them below.

3.2.1 Absence of a Feature

The perturbation mechanism used in this work introduces perturbation by removing a specific segment from the input
data. Removing here refers to shifting all the points belonging to this specific segment to a chosen point in the input
data. A segment can be an individual feature (e.g. bonnet in a car) or a collection of similar features (e.g. wheels of a
car). The perturbed data instance is then used as input for the classification model to compute saliency attributions. The
saliency attributions are computed as follows:

Sar(x) =|P(a) — P(a’) M

where S 4 () is the saliency attribution corresponding to the segment z that is used for perturbation, a is the actual
input, a’ is the perturbed input, and P(s) refers to the output class score by the classification model for a given input s.
shows an example of this saliency mapping method for input point cloud data representing an airplane.
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Figure 4: Saliency map produced by our method for the given input point cloud data representing a plane. Note: Refer
to the ’segmentation output’ figure (b) for corresponding parts represented along the x-axis in the bar plot (d).

3.2.2 Presence of a Feature

In addition to the above-mentioned method, we propose a variation of it where we analyze the impact of individual
features (or segments) on the output data. Here, we introduce perturbation into the input data by retaining a specific
segment and moving all the points belonging to other segments to the center of the point cloud data. Mathematically, it
can be expressed as follows:

Spr(z) = =|(P(a) = P(a”))] )

where Spr(x) is the saliency attribution corresponding to the segment z, a is the actual input, ” is the perturbed input
where the points not belonging to the segment = are moved to the chosen point, and P(s) refers to the output class
score by the classification model for a given input s. The minus sign (—) is used for the visualization purpose. It allows
the segment having the highest influence on the output value to have the highest attribution while the lowest influential
segment has the lowest value.

The saliency attributions generated by this method can be interpreted as a measure of the influence an individual
segment has on the output prediction value when it is the only segment present in the input. This informs us about how
good a specific segment is in carrying crucial information on its own. This interpretation is slightly different from the
previous one (described in[3.21)) as it does not provide the model with any other information that is carried by other
segments or the information that is generated when we combine two or more segments as shown in |Figure 5| where the
perturbed data (Figure 5b) manages to capture the structure of chair even after the points belonging to one segment
(Figure Sc) are moved to the center of the data. Therefore, we decided to look into how much information a single
segment carries that is independent of all the other segments. shows the saliency attributions computed using
this perturbation mechanism for the same input point cloud as data considered in
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Figure 5: Structural information carried by a point cloud data (left figure) and its perturbed data where all the points
belonging to one segment (right figure) are moved to the center of the data (center figure).

3.3 Data and Model

The dataset used in this work contains the part segmentation of a subset of ShapeNetCore[3] models based on the work
of Yi et al.[26]. The dataset consists of ~16000 models from 16 shape categories and the number of data instances in
each category varies from 55 to 5266. The number of parts for each model in each category also varies from two to six
as each category consists of different types of 3D models representing a specific object such as an airplane. We use this
dataset for both classification and segmentation tasks.

We use classification and segmentation networks based on the PointNet[12] architecture. The classification model is
trained on the above-mentioned dataset containing point clouds of 16 different categories. We trained two classification
models, one with the default orientation of the point cloud objects in the dataset and the other with the augmented
dataset where we modify the orientation of the point cloud objects. We trained the former classification model (that
uses the data with default orientation) for 10 epochs with the stochastic gradient descent (SGD) optimizer at 0.001
learning rate and the latter (with augmented data) for 100 epochs (because of the increased complication in the input
data due to the augmentation) while keeping the remaining hyperparameters unchanged.

To obtain better segmentation results, we trained individual models to segment particular point cloud data types. Our
dataset consists of point clouds representing 16 types of 3D objects such as airplanes, tables, and cars. Thus, we trained
16 segmentation models with each model focusing on segmenting the point cloud data representing a specific 3D object.
We also augmented the training data for these segmentation models by modifying the orientation of the data instances.
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Figure 7: Shifting points to the centroid of the input point cloud data. Points representing the seat (in (b)) and seat &
backrest (in (c)) are shifted to the center of the input data (marked with red rectangle).

This is similar to the augmentation performed on the training data for classification models. We trained these models
with SGD optimizer at 0.001 learning rate with the number of epochs varying from 20 to 150 depending on the size of
the subsets representing the 3D objects. shows some examples that demonstrate the performance of our trained
segmentation models on their corresponding input data.

The output of these segmentation models will be used to introduce perturbations into input data instances as described
above. We use the point-shifting mechanism to introduce perturbations as it allows the input point cloud instance to
retain its number of points thereby avoiding complications in the saliency method. The point-shifting mechanism is
described in the following subsection.

3.4 Point Shifting Mechanism

To introduce perturbations into the input data, as mentioned in[subsection 3.3 we use the point-shifting mechanism.
Zheng et al.[28]] proposed the idea of shifting the points to the center of the input data instead of dropping them from
the input. This is based on the intuition that all the outward points in the point cloud determine the output class score of
the classification model as they encode shape information while the points closer to the center of the point cloud have
almost no influence. However, this process of shifting the points to the center of the point clouds does not fit well with
our work. For example, shows an example of the perturbation of the input data by moving the points belonging
to two segments (seat and backrest of the chair) to the center (marked by a red rectangle) of the input data. Thus, the
center of the input data now contains a large number of input points and is not actually a part of the retained structure.
Therefore, it can act as an additional feature in the input data which is undesirable as we expect the shifted points to
have no influence on the decision-making process.

To address this issue, we need to determine a point in the input space where the points belonging to the specific segment
can be shifted, and the shifted points do not influence the output class score. This is possible when the shifted points do
not add any structural information to the data. Shifting the points to the center of the retained structure does not always
fulfill this requirement. This is evident in [Figure 7¢| where the center of the retained structure (the legs of the chair) lies
in between the leg structures and thus acts as an additional structure in the perturbed data.

One feasible solution is when the selected point for shifting the points is itself a part of the retained structure in the
perturbed input data. This will allow the shifted points to be a part of the perturbed data and provide no additional
structural information for the classification model. Since we have multiple points in the retained structure in the input
data, we choose a random point from it for shifting the points to. We observe that the saliency attributions corresponding
to the features do not vary when selecting random points for perturbation. We discuss this mechanism with some

examples in|section 4

4 Results and Discussion

In this section, we evaluate our method using various examples and criteria to highlight the usefulness of the mechanisms
that are part of our proposed method.



4.1 Clustering-based method

In this subsection, we analyze the use of classical clustering algorithms for segmenting point cloud data, indicate
the issues associated with their use, and describe how our method overcomes these issues. For the analysis, we used
clustering algorithms such as the k-means algorithm to generate clusters in the input point cloud data and use these
clusters to perturb the same input data to compute saliency attributions. shows examples of using the KMeans
clustering method with varying numbers of clusters, ¢, for generating segments for computing the saliency maps. We
used the absence of feature mechanism to introduce perturbations and compute saliency attributions. We observed
that the saliency maps differ as we vary the number of clusters. The most important part for ¢ = 3 is the top part of
the chair, and as we increase c to 12, the most important part shifts to the front left corner of the seat and the front
bottom part of the right leg of the chair. We observed similar behavior with other clustering methods such as spectral
and agglomerative clustering. This makes the use of clustering methods for XAI methods tailored for point cloud
data unreliable. Our proposed method addresses this issue by using segmentation models that are trained to segment a
given point cloud data into a specific number of segments. Another major advantage of using segmentation models
over classical clustering algorithms is their ability to learn and adapt to new types of data instances. In other words,
we can improve the performance of segmentation models by training it on more data whereas the classical clustering
algorithms do not offer this flexibility.

4.2 Use of Random point

As mentioned in[subsection 3.4] it is important to find a point in the input space where the points belonging to selected
segments can be shifted, and these shifted points do not add any structural information to the perturbed data. In this
section, we use an example to discuss and understand how our proposed method of selecting a random point in the
retained structure yields better results than other methods such as moving the points to the origin or to the center of the
point cloud data.

shows examples of input data perturbation for an input data representing an airplane. is the
segmentation output obtained from a segmentation model which is used to introduce perturbations into the input data

shown in [Figure 9a] For this example, we selected the segment representing the wings to introduce perturbations. We
selected a random point in the retained structure (structure without wings) and shifted the points belonging to the
segment representing wings. Two examples are shown in[Figure 9| with one random point selected in the tail region of
the airplane (see while the other random point is selected in the central part of the fuselage (see[Figure 9d).
We shift the points representing the wings to these random points and use these two perturbed data instances to analyze
the effect of the perturbations. We use them as input for the classification model and study the change in the output
values. We observed that the output values (all 16 values in the output vector) did not change. In other words, the
choice of point in the retained structure had no influence on the output values. We observed a similar pattern when we
chose different points in the retained structure to shift the points. This observation strengthened our intuition that when
the shifted points are a part of the retained structure (irrespective of the point selected in the retained structure for the
shifting process), they do not provide any additional structural information for the classification model. Therefore, we
use the random point selection mechanism for our point-shifting process.

4.3 Effects of Different Feature Instances: Wings vs. Fuselage

The datasets used for training classification models usually contain a large number of samples representing different
classes. In addition to the differences between the samples representing each class, samples representing a specific class
also vary slightly with respect to the information they carry. One such example from our dataset is the use of point
clouds representing airplanes with varying numbers of engines on the wings. In this section, we analyze the saliency
maps generated by our method to understand how different numbers of engines on the wings affect the output class
score. These saliency maps are generated using the classification model that was trained on the dataset containing point
clouds in the default orientation.

In we have saliency maps for eight input point cloud data instances representing airplanes. The saliency maps
are generated using the absence of feature mechanism and the segments are generated using the segmentation models
(no clustering). We observe that the saliency maps indicate that the wings are the strongest features for examples in
the top row (Figure 10al [Figure 10b| [Figure 10c}| [Figure 10d), while the fuselage is the most important feature for the
classification model in the bottom row (Figure 10e] [Figure 10f] [Figure 10g| [Figure T0h). A more detailed examination
of these samples shows that the major difference between the examples on the top row and bottom row is the number of
engines. The examples in the top row have two engines whereas the examples in the bottom row have four engines. The
shifting of wings to a selected point in the top four examples leads to the two engines adding minute information to
the retained structure as these engines are located very close to the fuselage. However, in the remaining examples, the

10
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Figure 9: Perturbation of the input data using random points (marked in (c) and (d)) selected from the retained structure.

shifting of wings to the selected point leads to a structure with two engines on each side of the fuselage. This captures
more information with respect to the overall structure of the airplane and thus leads to a lower influence of wings on
the output class value. This is also evident in the color scales of the figures that use saliency values to indicate how
influential the features of airplanes are. We observe that the magnitude with which wings affect the output class score is
significantly higher compared to other features in the top row’s examples. However, the presence of two additional
engines in the bottom row’s examples brings this magnitude down significantly and leads to the fuselage’s influence
becoming the biggest among all the features.

This example gives us an important insight into how the classification model learns to identify and take into consideration
different structural information captured by point clouds representing a specific object such as an airplane and make
decisions based on this information.

(a) (b) (© (@)

(e ) €3] (h)

Figure 10: Saliency maps of point clouds representing airplanes using the absence of feature mechanism.
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Figure 11: Saliency maps of point clouds representing motorbikes using the absence of feature mechanism.

4.4 Segmentation+Clustering: Use case

As described in|subsubsection 3.1.2] the Segmentation+Clustering mechanism allows the users to analyze a classification
model by taking individual features into account instead of using a set of similar features as one segment. This is
useful in understanding the contribution of individual features because a set of features can provide more structural
information for the classification model compared to individual features. For example, a set of wheels in a motorbike or
car captures more information than a single wheel. We analyze an example to see if this is reflected in the saliency
maps produced by our methods.

shows an example of saliency maps generated for point cloud data representing a motorbike. The division
of input data into multiple clusters is performed using both segmentation and segmentation+clustering mechanisms.
We observe that the wheels are clustered as one segment in|[Figure [1aJwhile the segmentation+clustering mechanism
manages to cluster them as separate segments as shown in We observe that the saliency map generated
using the segmentation mechanism indicates high importance for wheels. However, it does not provide any information
regarding which wheel is more influential. This is addressed by the segmentation+clustering mechanism which enables
us to introduce more specific perturbations into the input data using individual wheels. The saliency map generated
using this mechanism is shown in It shows the front wheel to have more influence on the output class
score compared to the rear wheel. This is useful mainly because the wheels of the motorbike are not identical and their
locations with respect to the remaining features in the input point clouds are also different. Therefore, these wheels are
expected to have different levels of influence on the output class score which is highlighted in

4.5 Performance analysis

We analyze the performance of our methods using the ground truth of the segmentation task and noisy point cloud data
as the input for the classification model in the pipeline.

4.5.1 Ground truth

This analysis corresponds to the saliency maps generated by our method based on the segments present in the ground
truth (GT) segmentation. The ground truth is used in the third stage of our XAl pipeline which is used to perturb
the input point cloud data. shows an example of the saliency map generated for the ground truth of an
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Figure 12: Saliency maps produced with ((c) & (d)) and without ((e) & (f)) using the segmentation ground truth labels
using the absence of feature mechanism. Note: Refer to the segmentation ground truth figure (b) for corresponding
parts represented along the x-axis in the bar plot (d) & (f).

input instance representing an airplane. We use this scenario because the ground truth is the "perfect output” of the
segmentation model. In other words, ground truth would be the output of the segmentation model if it had 100%
accuracy. Therefore, it is important to analyze the performance of segmentation models in generating the saliency maps
as they are a central part of our proposed method.

An example of the saliency maps produced using ground truth and the output of the segmentation model is shown in
We compare the saliency maps to analyze how the inaccuracy of a segmentation model affects the saliency
attributions of the segments in the input data. We observe that the segmentation model manages to produce saliency
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Figure 13: Noisy input with 5% noise and its corresponding saliency attributions produced by our proposed method.Note:
Refer to the segmentation output’ figure (b) for corresponding parts represented along the x-axis in the bar plot (d).

maps ((e) & (f)) similar to those produced using the segmentation ground truth data ((c) & (d)). This highlights the
ability of segmentation models to generate meaningful segments with high accuracy, which leads to the production of
meaningful saliency maps.

4.5.2 Noisy input

During the training process, a classification model learns to produce a desired output by tuning its parameters based on
the input instance provided and its corresponding ground truth. At the end of the training process, the model parameters
are tuned well enough to produce the desired output for a subset of the training dataset (assuming the model does not
reach 100% accuracy). However, to analyze the model more effectively, it is important to test its performance on input
instances that the model has not seen during its training process.

One of the most common mechanisms of generating new examples for testing AI models is by adding noise to the
available data instances. We use this mechanism to test the classification model as well as our XAI mechanism. We
introduce noise into the input data instances and analyze the saliency maps generated. An example of this analysis is
shown in We observe that our method produces similar saliency attributions for a noisy input data instance
that is generated by adding 5% noise to the actual input data (see [Figure 12e|and |[Figure 12f). We observed that
the method produces saliency maps with minute variations up to 10% noise level. However, higher levels of noise
magnitude lead to bigger changes in the input data and, therefore, lead to the generation of incorrect segmentation,
leading to incorrect saliency maps. This indicates that the classification model is robust to noise in the input data and
also highlights the performance of segmentation models that are a major part of our proposed method.

4.6 Limitations

One of the limitations of our proposed method is associated with the use of a segmentation algorithm. This limitation is
the possible inaccuracy of the segmentation model that is trained on the point cloud data. The segmentation models
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Figure 14: Distribution of the training data.

used in this work have accuracy values in the range of 65%-80%. This is mainly due to two reasons. The first reason
corresponds to the imbalance in the dataset. The dataset contains varying numbers of samples representing individual
3D model types with some of them having less than 100 samples as shown in[Figure T4 This makes learning difficult
for the segmentation models. The second reason corresponds to the structural information associated with these 3D
models. Some point clouds represent simple 3D models such as chairs, tables, and laptops which make it easier for the
corresponding segmentation models to learn the segmentation task. However, point clouds representing complex 3D
models such as motorbikes, cars and airplanes make learning more difficult for the AI models.

The second limitation is also associated with the dataset. This limitation is the requirement of a labeled dataset for
segmentation in case we decide to add another 3D object or category to the classification task. This is due to the use of
segmentation models that are trained for the segmentation of point clouds of specific categories.

The last limitation corresponds to the dependency of the XAI method on the output label of the classification model
when working without human input in the pipeline. Currently, the method uses the classification output to find the
corresponding segmentation model. However, when a classification model incorrectly classifies the input data, it will
lead to selecting a segmentation model that is inappropriate for the input data. However, human-in-the-loop can easily
resolve this problem with the user selecting the segmentation model based on the input point cloud data.

5 Conclusion

In this paper, we proposed a segmentation-based XAI method for understanding the decision-making process of
classification models working on point cloud data. The proposed method is based on a perturbation mechanism. It
specifically uses meaningful segments to introduce perturbations and thus, produces more meaningful saliency maps.
We used two types of perturbation mechanisms to generate explanations with two different perspectives. This allows
users to gain better insight into the decision-making process of a classification model and the information carried by
each segment in the input data. For the segmentation task, we proposed two mechanisms that leverage segmentation
models and clustering algorithms to generate saliency maps. We also proposed a new point-shifting mechanism for the
perturbation, to improve explainability. Applying the method to several representative examples, we highlighted the
usefulness of our proposed method and analyzed its performance using different input data instances. The proposed
method is model-agnostic and therefore can be used to explain any classification model working on point cloud data,
irrespective of the model architecture.

Our future work will be to address the limitations mentioned in [subsection 4.6
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