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1 INTRODUCTION

The SciVis Contest 2025 tackles the challenge of accelerating ma-
terials research for a circular economy by applying the CALPHAD
method to evaluate alloy compositions made from scrap metal [3].

CALPHAD (CALculation of PHAse Diagrams) is a computa-
tional method for predicting thermodynamic properties and phase
equilibria in multicomponent systems. It combines experimen-
tal data with theoretical models, supported by thermodynamic
databases, and is widely used in alloy design and microstructure
simulation [1].

The dataset used in the contest, generated via CALPHAD, con-
tains over 100,000 observations ;, each with n = 70 variables
Xj. Six input variables represent material composition (percent-
ages summing to 100%), while the remaining 64 describe output
properties such as density, yield strength (stress at which a material
begins to deform plastically), and stable phases [3]. Due to its high
dimensionality, the dataset requires specialized preprocessing and
visualization techniques for effective exploration and analysis. The
dataset includes several highly or perfectly correlated features.

In this contest contribution, we explore ways of reducing the
number of dimensions to be processed (section 3) for analysis, ways
of reducing the values to be explored (section 2 and section 4), and
combinations (section 5) of dimensionality reduction and visualiza-
tion techniques to support the discovery and evaluation of promis-
ing alloy compositions. In addition to widely used techniques like
t-SNE, scatter plots and parallel coordinate plots, we suggest em-
ploying a user-adjustable scoring function and sparse PCA.

2 SCORING FUNCTION

In practical applications, certain material properties are critical,
while others can vary without significantly affecting suitability of
a material for a certain purpose. To accommodate this variability
and provide users with flexibility to pursue their specific design
goals, we implemented a customizable scoring function S(Q;).
This function maps a user-defined subset of features to a single
score dimension, allowing for the prioritization of relevant material
characteristics according to specific use cases.

In the following defintion of the score S(€;), we use x;; to denote
the value of feature variable X; in observation €;, the optimization
direction of variable X; (1 for maximization, -1 for minimization)
is denoted as d;, and w; is the weight of variable X; for the score.
The overall score S(€;) of an observation is calculated as:
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Min-max scaling M transforms each variable to a [0, 1] range, My is
a flipped version of this variable in order to account for if a higher
value or a lower value is better. Since this removes information
about the absolute variance of each variable, dataset-specific ad-
justments to the weights are often necessary to optimize the scoring
process and yield the most valuable insights. However, accurately
calibrating these weights requires domain expertise to properly re-
flect each variable’s relative importance.

We scored materials based on mechanical and thermophysical
properties relevant for structural aircraft components [4], minimiz-
ing Density, CSC', and delta_T?, while maximizing yield strength
(YS) and Therm. Conductivity. Notably, no weighting factors were
applied. This score provides a quantitative measure of material suit-
ability to guide subsequent visualization.

3 DIMENSION REMOVAL

The dimensions V/ - MG2ZN3, T_-MG2ZN3, and T_AL3X were re-
moved due to containing only NaN values. To further reduce dimen-
sionality, we grouped semantically related and highly correlated
features, selecting one representative from each group using a mini-
mum correlation threshold of 0.95. The following correlated feature
groups were identified, with retained features shown in bold:

e Group l: Therm. conductivity, Therm. resistivity and Therm.
diffusivity exhibited a correlation of 0.99.

* Group 2: Linear thermal expansion, Technical thermal expan-
sion, CTEvol and heat capacity with a correlation of 0.98.

e Group 3: EL resistivity (2m) and El. conductivity are recip-
rocal thus correlation is 1.0.

e Group 4: Hardness (Vickers) and YS (MPa) were highly cor-
related (1.0).

4 SPARSE PCA

PCA was applied as a baseline linear dimensionality reduction
method, but the resulting components showed little meaningful
structure or clustering in scatterplots, suggesting limited utility.

To reduce dimensionality, Sparse PCA (SPCA) [5] was used.
SPCA applies L regularization to produce sparse loadings, en-
hancing interpretability by limiting the number of features influ-
encing each sparse principal component (SPC). The regularization
strength is controlled by hyperparameter A [5]. We optimized A
(range [1,200]) and the number of components m (1 to 18) to min-
imize reconstruction mean squared error (MSE), while balancing
two additional criteria: minimizing component count and maximiz-
ing component separation (CSS) for interpretability. Weights for
the objectives were 1 for MSE, 3 for CSS, as well as 0.5 for com-
ponent count.
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Component separation was quantified via the mean pairwise
Intersection-over-Union (IoU) across nonzero feature sets of com-
ponents, extending the Jaccard index [2]. Given n components
C ={cy,¢2,...,cm}, where each ¢y is the set of contributing fea-
tures of component &, the Component Separation Score CSS is de-

fined as: 2 m—1

m(m—1) &, 5 lac Ul

This score ranges from 0 (complete overlap between components,
normal PCA) to 1 (no overlap at all).

SparsePCA components were visualized via parallel coordinate
plots (see subsection 5.2 and subsection 5.3), enabling overview
and detailed exploration of the material property space.

41 t-SNE

Separate t-SNE visualizations were generated for the input and out-
put parameters, using perplexity values of 30 and 50, respectively.
The input t-SNE shows a 2D projection of a 6D convex diamond
structure, indicating that the 6D search space was evenly sampled.
The output displays multiple meandering river-like structures.

5 TooL: SCRAP METAL EXPLORER

To facilitate practical and efficient data analysis, we developed an
interactive visualization tool (see Figure 1). To ensure usability on
machines with limited computational resources, the tool supports
dataset subsampling, defaulting to 25% (see Figure 1, top left). Fig-
ures 4 and 5 demonstrate that subsampled layouts closely resemble
those of the full dataset.

Users begin by specifying a custom objective (see Figure 1, top
right) for the scoring function S(€;). This involves selecting tar-
get variables, defining whether they should be maximized or min-
imized, and assigning a weight. Once these parameters are set, a
reduced dataset is generated accordingly, allowing for exploration.

5.1 Linked t-SNE Views

The tool provides linked t-SNE views (see Figure 1, middle) of the
dataset, colored by the user-defined score metric. Users can con-
figure the direction of linking between views (Figure 3) and enable
tooltips that reveal additional variable information on hover. This
enables visual exploration of how specific input regions relate to
output behaviors, while being able to oberserve simple patterns in
the additional variables.

5.2 Explore Optimization results

Optimization results are visualized using a parallel coordinates plot
(see Figure 1, bottom). The plot displays the optimization param-
eters alongside a user-defined number of sparse principal compo-
nents (SPCs), which are sorted by their correlation with the scoring
objective to guide interpretation. By default, the plot is colored by
the score, though users may optionally select a different variable
for coloring. In addition, the most correlated SPC per objective
is shown. This visualization provides a compact summary of both
raw input variables and latent structures, allowing users to quickly
identify dimensions that impact optimization outcomes.

5.3 Drill Down

After identifying SPCs of interest, users can further examine their
structure. The tool displays component loadings in tabular form,
along with a parallel coordinates plot of the original variables that
contribute to each SPC (see Figure 2). The default coloring re-
mains the score, but this can be adjusted. Users may also add
other variables to the plot to provide additional context. This detail-
oriented plot enables targeted analysis of specific patterns, reveal-
ing interpretable connections between influential variables and the
optimization objective or other variables.

6 RESULTS

With the selected optimization target, the output t-SNE plot shows
that geometric clusters do not directly correspond to high or low
score regions. Instead, a gradient is visible within and across sev-
eral river-like structures. Hovering reveals that within each “river,”
KS1295[ %] remains constant, while 6082/ %/ varies orthogonally,
driving the score. Other input variables show no significant indi-
vidual influence (see Figure 7).

This pattern is confirmed in the drill-down plot, where selecting
the relevant input dimensions and coloring by score reveals lower
scores for high 6082/%] and KS1295/%] values, while the score
remains relatively stable across the other variables (see Figure 8).

The optimization plot reveals conflicting objectives. Most vari-
ables align with their target directions, showing high scores at the
desired ends of ranges, while Y5 (Yield Strength) is nearly inversely
correlated with the score. This suggests a trade-off with 7/erm.
Conductivity, as the two are inversely related (see Figure 13).

Coloring the plot by 6082/ %] shows that it increases both Der-
sity and delta_t, which are properties to be minimized (see Fig-
ure 11). KS7295/%] shows a similar, though weaker, effect
(see Figure 12). Coloring the input dimensions by VS gives in-
sight into the optimiziation conflict. High YS values result from
increased KS/295/%], which is otherwise unfavorable. 4032/%]
also raises VS but compromises thermal performance, making it a
poor trade-off overall (see Figure 9, Figure 10).

Drilling down into SPC_//, the sparse component most corre-
lated with the score, reveals that it captures shared variance across
three optimization objectives. Its strong correlation with density in-
dicates, that density is significantly correlated with multiple other
relevant material properties (see Figure 17).

Given the strong correlation of SPC_/ with both VS and 7herm.
Conductivity, this component can be interpreted as capturing a
trade-off axis between these properties and related variables. It
facilitates understanding of which underlying material features in-
fluence VS and 7Therm. Conductivity and their effect on the overall
score (see Figure 16). Notably, the similarities between KS7295/ %]
and 4032/ %] in relation to YS also extend to the other related vari-
ables (see Figure 15, Figure 14).

7 CONCLUSION

The devised analysis tool enables us to reduce both the number of
samples and dimensions, providing an intuitive overview as a start-
ing point for exploration, while also supporting targeted, in-depth
analysis of the data. In particular, the configurable score function
allowed users to easily recognize parameter combinations which
support their desired material properties and recodnise potential
trade-offs. SPCA allowed us to significantly reduce the number
of dimensions to be inspected while retaining an intuitive meaning
attached to the variable. The expressiveness of the standard visu-
alization techniques we used has been significantly boosted by the
scoring and the topic-specific SPCA components we suggest.

REFERENCES

[1] Modelling of phase diagrams and thermodynamic properties using cal-
phad method — development of thermodynamic databases. Computa-
tional Materials Science, 66:3—13, 2013. Multiscale simulation of het-
erogeneous materials and coupling of thermodynamic models. 1

[2] P.Jaccard. Nouvelles recherches sur la distribution florale. Bulletin de
la Société Vaudoise des Sciences Naturelles, 44:223-270, 1908. 2

[3] SciVis Contest 2025 Committee. Scivis contest 2025: Dataset descrip-
tion and download. Online, October 2024. 1

[4] A. Yilmaz and O. Civalek. A brief introduction to the properties of
aerospace materials. International Journal of Engineering and Applied
Sciences, 17:44-60, 05 2025. doi: 10.24107/ijeas.1640337 1

[5] H.Zou, T. Hastie, and R. Tibshirani. Sparse principal component anal-
ysis. Journal of computational and graphical statistics, 15(2):265-286,
2006. doi: 10.1198/106186006X113430 1



Scrap Metal Explorer

Settings Optimization

sample % Numoer ofOojectves [s ]
1% B 100%

Objectives:
Scatterplot dot size Density(g/cm3)
2] YS(MPa)
csc
delta_T

Therm.conductivity(W/(mK))

t-SNE Linked Views

Select Direction:
Input > Output -

Select Hover Columns for t-SNE Plots:
x | KS1295[%] | x| 6082[%] | 2024[%] || bat-box[%]

x| 4032[%] || X 3003(%]

score
100 07
06
s0
06
g
S e 05
o
G
2
0s
-50.
045
0e
100
035
-100 -50 0 50 100
TSNE-1_input
Explore Optimization results
Number of sparse dimensionstoinclude:(s |
Objective / SPCA correlations:
Density(g/cn3) XSl with 0.892
Vs(a) XSPC1  with 0961
csc X SPC1 with 1.00
detea T XsPCS  with 0.832
Thern.conductivityW/(aK)  x SPC 1 with -0.543
Select Color
score B
- wpa « o
e . e et

26801 15545 osiazr s

Figure 1: Top part 1 of the user interface O of the tool after start-up. See Figure 2 for bottom part U .
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Figure 2: Bottom part U of the user interface OJ. See Figure 1 for top part M.
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Figure 3: Selection of data samples in t-SNE of input parameters highlights the same samples in the t-SNE of all output parameters. In the right
figure the mouse hovers over a sample in order to get detailed information of parameter values for this sample in an info-box.
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Figure 4: Comparison of t-SNE of input parameters for 25% of the data points vs. of all data points
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Figure 15: Showing loadings of SPC_1 colored by KS1295[%)]
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Figure 16: Showing loadings of SPC_1 colored by score.
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